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Exercise 1. Spherical conductor inside a uniform electric field [15 points]

The general solution of the Laplace equation in spherical coordinates is

Φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

(
Almr

l +
Blm
rl+1

)
Ylm(θ, φ), (1)

where the spherical harmonics are given by

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimφ. (2)

a) (1 point) How does Eq. (1) simplify for potentials with azimuthal symmetry?

A spherical conductor of radius R is placed in an (initially) uniform electric field E = E0ẑ. We
place the origin of the coordinate system at the center of the sphere and we denote by θ the polar
angle with respect to the ẑ-axis. The potential of the conductor is set to zero Φ(r = R) = 0.

b) (3 points) What is the potential Φ(r) very far away from the conductor (r � R)?

c) (3 points) Show that the potential outside the sphere is given by

Φ(r, θ) = −E0

(
r − R3

r2

)
cos θ + C

(
1− R

r

)
, (3)

where C is a constant.

Recall: The Legendre polynomials Pl(x) are given by

Pl(x) =
1

2ll!

dl

dxl
(
x2 − 1

)l
. (4)

d) (3 points) Find the induced charge density σ(θ) on the surface of the sphere, if the net
charge of the conductor is Q. What is the constant C of Eq (3) in that case?

e) (2 points) Calculate from first principles (e.g. Gauss’ law) the pressure exerted on a surface
element of the sphere for Q = 0.

f) (3 points) What is the force acting on the north hemisphere of the sphere and what is the
total force acting on the sphere for Q = 0?

Solution.

a) In the case of azimuthal symmetry the potential does not depend on φ, thus we only have the term m = 0

in the above sum. Moreover, since the functions Yl0 and Pl only differ by a normalization constant, we

introduce new parameters Al and Bl instead of Al0 and Bl0. The resulting expression is

Φ(r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl(cos θ). (S.1)

b) At large distances from the sphere the potential does not go to zero, but we must recover the unperturbed

uniform field E = E0ẑ. The potential (recall: E = −∇Φ) in this case is thus given by Φ(r � R) =

−E0z + C = −E0r cos θ + C, where θ is the angle with respect to the ẑ-axis.
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c) The first condition we use is the surface potential Φ(r = R) = 0 and Eq. (S.1). They implies

AlR
l +

Bl
Rl+1

= 0 ⇒ Bl = −AlR2l+1. (S.2)

Eq. (S.1) can thus be rewritten as

Φ(r, θ) =

∞∑
l=0

Al

(
rl − R2l+1

rl+1

)
Pl(cos θ). (S.3)

Using now as second condition the one obtained in part (b), and noting that for r � R the second term in

parentheses in Eq. (S.3) is negligible, we have

− E0r cos θ + C =

∞∑
l=0

Alr
lPl(cos θ). (S.4)

Knowing that P0(cos θ) = 1 and P1(cos θ) = cos θ we conclude that A0 = C, A1 = −E0 and Ak = 0 ∀ k ≥ 2.

Finally we get

Φ(r, θ) = −E0

(
r − R3

r2

)
cos θ + C

(
1− R

r

)
. (S.5)

d) Here we use the discontinuity of the electric field across a surface charge σ, which is described by the

equation Eabove − Ebelow = σ/ε0 n̂, where above and below refers to the regions of space separated by the

surface and close to it. The vector n̂ is a unit vector pointing “upwards”. [It is simply derived taking a

small enough surface element in which σ is constant and applying Gauss’ and Stokes’ theorems with a thin

pillbox resp. thin rectangular loop.] Using the fact that E = −∇Φ and that the field inside (here Ebelow)

is zero allows us to find the induced charge density σ by looking at the derivative of the potential in the

direction normal to the surface. Using Eq. (S.5) we obtain

σ(θ) = −ε0
∂Φ

∂r

∣∣∣
r=R

= 3ε0E0 cos θ − ε0
C

R
. (S.6)

Now we use the fact that the net charge of the sphere is Q, which gives

Q =

∫
S

σ ds = 3ε0E0

∫
S

cos θ ds− ε0
C

R

∫
S

ds. (S.7)

The first integral gives 0, while the second one simply gives 4πR2. We thus see that C = − Q
4πε0R

and the

potential in Eq. (3) reads

Φ(r, θ) = −E0

(
r − R3

r2

)
cos θ +

Q

4πε0

(
1

r
− 1

R

)
. (S.8)

e) We start by considering the force acting on an infinitesimal surface element due to the presence of everything

else, except the element itself (since it does not produce a force on itself). The force per unit surface

(electrostatic pressure) is given by f = σEav, where Eav = (Ein + Eout)/2 is the average field at the

position of the surface element. Here, since we have a conducting sphere, we have that Ein = 0 and the

field just above the conducting surface is given by Eout = σ/ε0 n̂ (again from the discontinuity of the electric

field across a surface charge: Eout − Ein = σ/ε0 n̂). Therefore the total pressure on a surface element is

given by the expression

P =
σ2

2ε0
, (S.9)

f) From symmetry, the components of the final force in the xy-plane do compensate and the resulting force

only has a z-component given by

fz =
σ2

2ε0
cos θ ds =

9

2
ε0E

2
0 cos3 θ ds, (S.10)

where θ is the angle between n̂ and ẑ and in the last step we used the surface charge density σ(θ) found

in part (d) when Q, i.e. C, is 0. We now integrate Eq. (S.10) over the surface of the northern hemisphere

(NH) in order to get the total force

F =

∫
NH

fz =
9

2
ε0E

2
0R

2

∫ 2π

0

dφ

∫ π/2

0

cos3 θ sin θ dθ. (S.11)
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The integral over θ is easily solved using the substitution u = cos θ (du = − sin θ dθ) giving

F = 9πε0E
2
0R

2

∫ 1

0

u3du =
9

4
πε0E

2
0R

2. (S.12)

The total force acting on the sphere is found in the same way, but the integral over θ runs between 0 and

π instead of 0 and π/2, therefore giving F = 0.
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Exercise 2. Magnetic field of a charged rotating spherical shell [15 points]

Figure 1: Charged rotating spherical shell. The external magnetic field refers only to part 5.

Consider a spherical shell of radius R with a charge Q uniformly distributed on its surface, which
rotates around its diameter with constant angular velocity ~ω (see Fig. 1).

a) (2 points) Calculate the current density ~j.

b) (4 points) Show that the vector potential ~A inside and outside the sphere is

~A =


Q

12πε0c2R
~ω × ~r r < R

QR2

12πε0c2
~ω × ~r

r3
r > R

The following integral may be used:∫ 1

−1

ξdξ

(1− αξ)1/2
=

2

3α2

(
(2− α)

√
1 + α− (2 + α)

√
1− α

)
.

c) (4 points) Determine the magnetic field ~B in the interior and the exterior of the spherical
shell.

d) (2.5 points) Determine the magnetic dipole moment ~m for the rotating spherical shell.

e) (2.5 points) Assume now that the sphere is immersed in an external magnetic field

~Bext. =
k

r
~el

where k is a constant and the angle between ~el and ~ω is θ0.Calculate the force acting on
the surface of the sphere due to the external magnetic field and determine the associated
potential energy.

Solution.

a) The current density is given by ~j = ρ~v, ~v = ~ω × ~r, and the charge density is ρ = σδ(r − R) with

σ = Q/(4πR2). Then we get

~j(~r′) =
Q

4πR2
δ(r′ −R)(~ω × ~r′), (S.13)
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b) For the vector potential we have

~A =
1

4πε0c2

∫ ~j(~r′)

|~r − ~r′|
dV ′. (S.14)

and so we obtain
~A =

Q

c216π2ε0R2
~ω × ~F (~r) (S.15)

with

~F (~r) =

∫
δ(r′ −R)

|~r − ~r′|
~r′dV ′. (S.16)

Because of rotation symmetry it follows that ~F = f ·~r/r. We choose the ~r-direction to be the z′-axis, then

θ′ is the angle between ~r and ~r′. By using dV ′ in spherical coordinates and integrating over φ′ we get

F =

∫ π

0

dθ′
∫ ∞
0

dr′
δ(r′ −R)r′ cos θ′2πr′2 sin θ′

(r2 + r′2 − 2rr′ cos θ′)1/2
(S.17)

=

∫ π

0

dθ′
2πR3 cos θ′ sin θ′

(r2 +R2 − 2rR cos θ′)1/2
. (S.18)

We make the substitution cos θ′ = ξ and we get

F = −2πR3

∫ −1

+1

ξdξ

(r2 +R2 − 2rRξ)1/2
. (S.19)

This is an integral of the form

I =

∫
ξdξ

(A−Bξ)1/2
=

1√
A

∫
ξdξ

(1− αξ)1/2
, (S.20)

with A = r2 +R2 , B = 2r ·R , α = B/A. We can then use the hint and finally obtain

F =
2πR

3r2

(
(r2 +R2 − rR)(r +R)− (r2 +R2 + rR)|r −R|

)
. (S.21)

Inside the sphere is r < R and so |r −R| = R− r and

F =
4π

3
Rr. (S.22)

Outside we find

F =
4π

3

R4

r2
. (S.23)

The solution for the vector potential is

~A =


Q

12πε0c2R
~ω × ~r r < R

QR2

12πε0c2
~ω × ~r

r3
r > R

c) We can then get the magnetic field ~B by taking ~B = ~∇× ~A,

~B =
Q

12πε0c2R

(
~ω(~∇ · ~r)− (~ω · ~∇)~r

)
r < R. (S.24)

Which gives, after explicit computation,

~B =
Q

6πε0c2R
~ω r < R. (S.25)

For r > R we obtain,

~B =
QR2

12πε0c2

3
(
~ω · ~r

r

)
~r
r
− ~ω

r3
≡ 3(~m · ~r)~r − r2 ~m

r5
. (S.26)

d) We see that the ~B-field inside the sphere is homogeneous and proportional to ω. Outside the sphere we

find the behaviour of a dipole with

~m =
QR2~ω

12πε0c2
. (S.27)

e) The potential is the one acting on the dipole moment and is given by

U = −~m · ~B = − QR2

12πε0c2
~ω · ~Bext. = − QR2

12πε0c2
ωBext. cos(θ0) = − QRk

12πε0c2
ω cos(θ0). (S.28)

The corresponding force is

~F = −∇U = − kQ

12πε0c2
ω cos(θ0)~er (S.29)
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Exercise 3. Special Relativity [15 points]

A point-like charge q of mass m is initially at rest and it gets accelerated by a constant force ~F .

a) (2 points) What is the velocity of the charge as a function of time?

b) (2 points) What is the energy of the charge as a function of time?

c) (2 points) What is the distance travelled by the charge as a function of its energy?

d) (2 points) Calculate the derivative
dτ

dE
, (5)

where τ is the proper time of the particle and E the energy of the charge, as a function of
the energy.

e) (4 points) Calculate the instantaneous force felt by the charge in its own rest frame during
the linear acceleration.

f) (3 points) Assume now that the constant force ~F originates from a constant electric field.
What is the electromagnetic field strength tensor Fµν in the instantaneous rest frame of
the charge? Is your answer consistent with the result of the previous question?

Hint. Recall that

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 .

Solution.

a) Since F = dp/dt, we have that p(t) = Ft. Now on the other hand p(t) = γ(t)mv(t) = mv√
1−v2/c2

, and so

solving for v yields v(t) = Ft

m
√

1+F2t2/(m2c2)
.

b) The energy is given by

E(t) = γmc2 =
mc2√

1− v2/c2
=

mc2√
1− F2t2

m2c2+F2t2

=
mc2
√
m2c2 + F 2t2

mc
= mc2

√
1 +

F 2t2

m2c2
.

c) To find the distance, integrate v(t′) up to time t. We get

x(t) =

∫ t

0

v(t′)dt′ =

[
mc2

F

√
1 +

F 2t2

m2c2

]t
0

.

In terms of the energy, this yields

x(E) =
E −mc2

F
=
Ekin

F
.

This result could have also been obtained through E =
∫
Fdx together with the knowledge that F is

constant.

d) To get the proper time as a function of the energy, note that dτ = dt
γ

and so dτ
dE

= 1
γ
dt
dE

. Then, we use

dE/dt =
F 2t

m
√

1 + F2t2

m2c2

=
Fp

m
√

1 + F2t2

m2c2

to get

dτ

dE
=
m

γ

√
1 + F2t2

m2c2

Fp
,
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yielding
dτ

dE
=

E

c2γFp
=

E

Fc2γ
√
γ2 − 1mc

=
1

Fc
√
E2/(mc2)− 1

=
m

F
√

(E2 −m2c4)

as p = γmv =
√
γ2 − 1mc.

e) We calculate this using the four-force, but we can do this both starting from the rest frame of the particle

or from the lab frame. In the rest frame, the four-force takes the simple form f ′µ = (0, ~F ′). Assuming the

particle moves in the x direction, we can transform this with a Lorentz transformation of speed v to the

lab frame and obtain fµ = Lµνf
′ν = (γvF ′x, γF

′
x, F

′
y, F

′
z). Now we know that in the lab frame f i = γFi for

i ∈ {1, 2, 3}, and so Fx = F ′x, F ′y = γFy = 0 and F ′z = γFz = 0.

To calculate it starting from the lab frame is slightly more complicated: the four-force in the laboratory

frame is given by fµ = (mc dγ
dτ
, γ ~F ). For convenience, we shall denote by ~γ the vector (γ, 0, 0), and we shall

look at the force on the particle when it is travelling in x-direction (without loss of generality). Now, as

we change frame into the particle rest frame, we use a Lorentz transformation of speed v in x-direction,

yielding

f ′µ = Lµ νf
ν = (mcγ

dγ

dτ
− γβ~γ · ~F ,−mcγβ dγ

dτ
+ γ2Fx, γFy, γFz).

In the case of linear acceleration, ~F = (F, 0, 0), ~γ · ~F = γF and

dγ

dτ
= γ

dγ

dt
=
F 2tγ

mc
(m2c2 + F 2t2)−1/2 =

F 2t

m2c2
,

yielding an overall force four vector of

f ′µ = (mcγ
F 2t

m2c2
− γ2βF,−mcγβ F 2t

m2c2
+ γ2F, 0, 0).

The force felt by the particle is hence

F ′ = −mcγβ F 2t

m2c2
+ γ2F = γ2F − F 3t2

m2c2
= F

in x-direction.

f) The electric field in this case transforms as E′‖ = E‖ for the linear motion, so the results indeed coincide.

To calculate the result with the more general transformation rule, use F ′µν = Lµ ρL
ν
σF

ρσ:

For our case of linear acceleration in an E field, the B field vanishes and E1 = E, so the tensor F takes

the simple form

Fµν =


0 −E 0 0

E 0 0 0

0 0 0 0

0 0 0 0

 .
With

Lµ ν =


γ −p/m 0 0

−p/m γ 0 0

0 0 1 0

0 0 0 1


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we get

F ′µν = Lµ ρL
ν
σF

ρσ =


γ −p/m 0 0

−p/m γ 0 0

0 0 1 0

0 0 0 1




0 −E 0 0

E 0 0 0

0 0 0 0

0 0 0 0




γ −p/m 0 0

−p/m γ 0 0

0 0 1 0

0 0 0 1



=


γ −p/m 0 0

−p/m γ 0 0

0 0 1 0

0 0 0 1



Ep/m −Eγ 0 0

Eγ −Ep/m 0 0

0 0 0 0

0 0 0 0



=


0 −Eγ2 + Ep2/m2 0 0

Eγ2 − Ep2/m2 0 0 0

0 0 0 0

0 0 0 0



=


0 −E 0 0

E 0 0 0

0 0 0 0

0 0 0 0


which yields E′‖ = E‖.

We could have alternatively employed tensor notation to solve this question. Then, we would only have to

check the relevant components though (and not need to do the whole transformation).

Exercise 4. Radiation emitted by an accelerated charge [15 points]

a) (2 points) The electric ~E field generated by a moving charge q is given by

~E(~x, t) =
q

4π

[
~n× {(~n− ~v)× ~̇v}

(1− ~v · ~n)3R

]
ret

+O(1/R2) (6)

where v is the velocity of the charge,

γ = (1− v2)−1/2 (7)

~R = ~nR, with R = |~x− ~r(tret)|, (8)

and ~r is the position vector of the charge. All the quantities on the right hand side of
Eq. 6 are computed at a “retarded time” tret while the electric field on the left hand side
is evaluated at an observation time t.

• What is the equation relating the retarded time and the observation time?

• Prove that
dt

dtret
= 1− ~v · ~n.

b) (2 points) Show that the Poynting vector for a moving charge can be written as

~S =
∣∣∣ ~E∣∣∣2 ~n− ( ~E · ~n) ~E. (9)

c) (2 points) Starting from the continuity equation satisfied by the Poynting vector show that
the energy radiated per unit of retarded time and unit of solid angle centered around the
moving charge at the retarded time is given by

dPret
dΩ

≡ dE

dtretdΩ
=
[
~S · ~nR2

]
ret

dt

dtret
. (10)
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Figure 2: Angles between ~̇v, ~v, ~n

d) (4 points) Assume that the velocity of the charge is perpendicular to the acceleration, as
in Fig. 2. Show that the power radiated by the charge as a function of the angles θ, ϕ,
shown in Fig. 2, is

dPret
dΩ

=
q2

16π2
|~̇v|2

(1− v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

]
. (11)

Tip: It may be helpful to prove first the identity∣∣∣~n× (~c× ~d)
∣∣∣2 = ~c 2(~n · ~d)2 + ~d 2(~n · ~c)2 − 2(~c · ~d)(~n · ~c)(~n · ~d) (12)

e) (2 points) Explain qualitatively in which direction the power radiated is stronger for a
charge moving with a velocity close to the speed of light.

f) (3 points) What is the total power radiated in all directions?

Solution.

a) • The equation relating the retarded time and the observation time is

t− tret = R(tret) (S.30)

with R(tret) defined as in eq. (8).

• We have

t = tret +R(tret) (S.31)

dt

dt′
= 1 +

d

dtret
R(tret)

= 1 +
d

dtret

√
(~x− ~r(tret))2

= 1 +
~x− ~r(tret)
|~x− ~r(tret)|

· (−~v)

= 1− ~n · ~v (S.32)

b) The Poynting’s vector is given by
~S = ~E × ~B (S.33)

where the magnetic field ~B is related to ~E via

~B(~x, t) = [~n× ~E]ret (S.34)

We then have
~S = ~E × (~n× ~E) (S.35)
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and in components

Si = εijk Ej(~n× ~E)k

= εijk Ej εlmk nlEm

= (δil δjm − δim δjl)nlEj Em

that is

~S = (~n | ~E|2 − ~E (~n · ~E)) (S.36)

c) From the continuity equation for the Poynting vector

dω

dt
+ ~∇ · ~S = 0 (S.37)

where ω is the energy density, we get∫
V

dω

dt
=
dE

dt
=

∫
∂V

~S · ~nR(tret(t))
2 dΩ

dE

dΩ dt
=
dP

dΩ
= ~S · ~nR(tret(t))

2

dE

dΩ dtret
=
dP

dΩ

dt

dtret
=
dPret
dΩ

= ~S · ~nR(tret)
2 dt

dtret
(S.38)

d) From eqs. (6) and (S.36) the Poynting vector takes here the form

~S = (~n | ~E|2 − ~E (~n · ~E))

=
q2

16π2
~n

[
1

R2

∣∣∣∣∣~n× {(~n− ~v)× ~̇v}
(1− ~v · ~n)3

∣∣∣∣∣
2]
ret

+O(1/R3) (S.39)

Then the power radiated becomes

dPret
dΩ

= (~S · ~n)R2 dt

dtret

= (~S · ~n)R2 (1− ~v · ~n)

=
q2

16π2

∣∣∣~n× ((~n− ~v)× ~̇v
)∣∣∣2

(1− ~v · ~n)5
(S.40)

(S.41)

First we have to compute∣∣∣~n× ((~n− ~v)× ~̇v
)∣∣∣2 = (εijk nj (εklm (n− v)lv̇m)) · (εiab na (εbcd (n− v)cv̇d))

= (δil δjm − δim δjl) (δic δad − δid δac) (n− v)l v̇m (n− v)c v̇d nj na

= (δcl δjm δad − δdl δjm δac − δcm δjl δad + δdm δjl δac) (n− v)l v̇m (n− v)c v̇d nj na

= (~n− ~v)2 (~n · ~̇v)2 − 2(~n · ~̇v)
(
~̇v · (~n− ~v)

)
(~n · (~n− ~v)) + (~̇v)2 (~n · (~n− ~v))2 (S.42)

Now using the fact that ~̇v ⊥ ~v and |~n|2 = 1, the previous expression reduces to∣∣∣~n× ((~n− ~v)× ~̇v
)∣∣∣2 = (~n− ~v)2 (~n · ~̇v)2 − 2(~n · ~̇v)2 (1− ~n · ~v) + (~̇v)2 (1− ~n · ~v)2 (S.43)

Using the polar angles as in the picture, we have

~n · ~v = v cos θ (S.44)

~n · ~̇v = v̇ cosϕ cos(π/2− θ) = v̇ cosϕ sin θ (S.45)

(~n− ~v)2 = 1 + v2 − 2 v cos θ (S.46)

Inserting these quantities in (S.43), we find∣∣∣~n× ((~n− ~v)× ~̇v
)∣∣∣2 = (~̇v)2 (1− v cos θ)2 − (~̇v)2 γ−2 sin2 θ cos2 ϕ (S.47)

with γ = (1− v2)−1/2. Hence the power radiated becomes

dPret
dΩ

=
q2

16π2

|~̇v|2

(1− v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

]
. (S.48)
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e) In the relativistic limit (v → c) the maximal power radiated is obtained in the forward direction (θ → 0),

as in the case of linear acceleration.

f) The integral we have to compute is∫ 2π

0

dϕ

∫ π

0

dθ sin θ

(
q2

16π2

|~̇v|2

(1− v cos θ)3

[
1− sin2 θ cos2 ϕ

γ2 (1− v cos θ)2

])
(S.49)

The first term in the brackets will give∫ 2π

0

dϕ

∫ π

0

dθ
sin θ

(1− v cos θ)3
= 2π

(
− 1

2v
(1− v cos θ)−2

)∣∣∣∣π
0

= 2π

(
− 1

2v

[
1

(1 + v)2
− 1

(1− v)2

])
= 2π

(
− 1

2v

−4v

(1− v2)2

)
=

4π

(1− v2)2
(S.50)

The second term gives ∫ 2π

0

dϕ cos2 ϕ

∫ π

0

dθ sin θ
sin2 θ

(1− v cos θ)5
=

=

∫ 2π

0

dϕ
1

2
(1 + cos 2ϕ)

∫ π

0

dθ sin θ
sin2 θ

(1− v cos θ)5

= π

[
1

6v2
2 + 6v2

(1− v2)3
− 1

3v2
1

(1− v2)2

]
= π

4

3

1

(1− v2)3
(S.51)

Combining the two results:

Pret =
q2

16π2
|~̇v|2

(
4πγ4 − π 4

3
γ4

)
=
q2

4π

2

3
|~̇v|2 γ4 (S.52)

that is exactly Larmor’s formula for a charge in circular motion.
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