ETH Solid State Theory FS 15

Eidgendssische Technische Hochschule Ziirich ° .
Swiss Federal Institute of Technology Zurich Solut lon 5 PD V Geshkenbeln

Problem 5.1 One-Dimensional Model of a Semiconductor

The Hamilton operator is H; = Hy + V where
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(a) Let us consider the case v = 0. We write
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where k € [—m,m) and kN = 27n, n € Z, and a = 1. The above expression is plugged
into Eq. (1) and we obtain
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where we have made use of the Bravais sum.!

Let us define the following one-particle state: |¢;) = cl|0) where |0) is the vacuum.

It fulfills

cherldr) = clerct|0) = ch(1 = cher)|0) = cf|0) = |é), (6)

and consequently
Ho|¢x) = €x|on). (7)
Therefore, |¢y) is an eigenstate of the Hamilton operator. A similar procedure may

be performed also with many-particle states CLCJTQ e c}in 0).

(b) Let’s consider now the case v # 0. Again, the expression (3) is plugged into V:
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where we have used the identity (—1)7 = e'™ (for integer j). It follows that
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LA more precise form of the Bravais sum is Z] ih=kJ = N§, &'+, where G may be an arbitrary
reciprocal lattice vector (in our case G = 2nm). Thus, by restricting ourselves to the first Brillouin zone
we obtain the result quoted in the main text.



From now on we will work only in the reduced Brillouin zone (k € [—7/2,7/2]), for
which the notation Y’ stands. Note that

€pir = —2tcos(k + ) = 2t cos k = —ey. (10)

G = (C:ir) (11)

the Hamilton operator is written in matrix form

Introducing
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We define new operators a; and by according to
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where

We can choose U such that UTH U is diagonal. The energies are obtained from the
secular equation
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A=+y/€ + 02 = +E. (17)

which has the solutions

Furthermore, one finds

E
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Finally, the Hamilton operator is written in the eigenbasis

H1 = Z/ (—Ek aLak + Ek bzbk> . (19)
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The band structure of the alternating chain is shown in Fig. 1. The gap between
valence and conduction band is A = 2F, ;5 = 2v. The ground state for N/2 electrons

on the chain is given by
w/2

=] qilo). (20)
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Compared to a) where we had a half filled band, we now have one fully filled band
(due to the Brillouin zone reduction) with a finite gap for all kinds of excitations.
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Figure 1: The two bands of the alternating chain.



