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Problem 7.1 Volume change under deformation

As the displacement gradient uαβ is a real symmetric rank-2 tensor, it can be diagonalised
by an orthogonal transformation. We hence consider a small cube of the material that
is oriented along the tensor’s eigenvectors. Under the deformation u, this cube is only
elongated or compressed along the axes, i.e. there is no shear strain. If the cube’s original
volume (i.e. without deformation) is V = L3, with L small enough that the deformation
over the extent of the cube can be approximated by a linear Taylor expansion of u, the
deformation changes the cube’s volume to
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Problem 7.2 Quantum corrections to classical specific heat

Starting from the general definition of the specific heat for phonons with dispersion ω~k,
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we expand the fraction in β~ω~k = ~ω~k/kBT � 1 (cf. the lecture notes):
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According to the Debye model we approximate the dispersion ω~k = ck and replace the
sum over modes by an integration over a momentum sphere with radius kD:∑
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where we have accounted for the fact that in 3D there are three phonon branches s. Then,
neglecting corrections of order O((θD/T )3),
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Using k3D = 6π2N/V and (~ckD)2 = (kBθD)2, we finally arrive at
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where the first term is the Dulong-Petit law and the second one the leading high-temperature
correction.

Problem 7.3 Specific heat in d dimensions

Let us start from the phonon energy of a d-dimensional crystal:
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For low temperatures we can restrict the sum to the acoustic phonon branches and linearise
their dispersion ωs,~k = cs(k̂)k, with a sound velocity cs that in general depends on the

direction k̂. Then, for d = 2 dimensions, we can go to polar coordinates ~k → (k, φ) and
extend the integration region to infinity:
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Then, substituting
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with the Riemann Zeta function ζ(3) ≈ 1.202. Furthermore, we define the effective sound
velocity
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which, for an isotropic crystal, reduces to
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Then we have for the energy
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and thus the specific heat
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is proportional to the square of the temperature.
Generalising our analysis to d dimensions, one notices that the momentum integral in
Eq. (12) will contain the d-th power of the momentum k, because the integral measure
ddk ∼ kd−1 and the dispersion ω~k is linear in k. The substitution (14) will therefore
produce a temperature dependence of the energy

E ∼ T d+1, (21)

so that the specific heat

cV ∼ T d (22)

contains the dimensionality as the power of the temperature dependence.
This is in contrast to the specific heat of electrons in a metal, which is linear in temper-
ature, independently of the system’s dimensionality. The reason for this difference is the
presence of a Fermi sea with an extended Fermi surface, which provides a large, and to
leading order temperature-independent, density of states at the Fermi level.
On the other hand, the specific heat of phonons in two dimensions, Eq. (20), is very similar
to the expression we found for graphene in problem 6.1, cf. Eq. (46) of the corresponding
solution sheet. The main difference between a metal and graphene is that, while both
are fermionic systems, in the former the density of states is finite at the Fermi level due
to the presence of an extended Fermi surface, whereas N(µ) = 0 in graphene, where the
Fermi level is pinned to the Dirac points. Therefore, the number of thermally excited
quasiparticles in a metal is, to leading order, ∼ N(µ)T , in contrast to graphene, where
this term vanishes. Here, the density of states around the Fermi level grows linearly
N(ε) ∝ ε such that the number of excitations, and hence the heat capacity, goes as

∼
∫ T
0

dεN(ε) ∝ T 2. The density of states for the two-dimensional phonon system has the
same form N(ε) ∝ ε, explaining the identical result for the specific heat, up to numeric
factors due to mode counting and the replacement c̄→ vF .
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