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Problem 9.1 Distribution function

We consider a Fermi gas
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with a weak contact interaction U < €p, such that we can treat the interaction term
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as a perturbation to the free Fermi gas
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Hence, we expand the ground state of the interacting system
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around the non-interacting ground state
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up to second order in the interaction.

Denoting the eigenstates and eigenenergies of the non-interacting system as |m) and E,,,
respectively, such that Hy|m) = E,,|m), and abbreviating the matrix elements of the
interaction as V,,; = (m|V|l), the first- and second-order corrections to the ground state
are in general
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Using these, the momentum distribution function is the expectation value of the occupa-
tion number operator ng, = c};ackg
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The zeroth-order term is just the Fermi distribution at zero temperature, i.e. the step
function
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The first-order term clearly vanishes
1y = (i [ 0) + (D[ = 0 (11)

because the occupation number operator is diagonal in the non-interacting eigenbasis
and the first-order correction (6) has no overlap with the non-interacting ground state,
(@MY = 0. In second order, however, several terms contribute:
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where in the last step we again used the fact that the occupation number operator is
diagonal in the non-interacting basis.

The only states m for which the interaction has a non-vanishing matrix element Vg
differ by a pair of particle-hole excitations from the ground state. These can therefore be
enumerated by summing over the momenta of the excitations

Z:|Tn>_> Z 5k1+k2,k3+k4CL1TC};2¢0k3~Lck4T|0>: Z /5k1+k2,k3+k4CJ{TC;¢C3¢C4T|O>7 (15)

m=£0 ki,...k4 ki,..k4
k1#ka
where we have used the abbreviations c¢;, = cg,, and the primed sum indicates the

omission of configurations with k; = k4, which would be equal to the ground state |0).
With this parameterization we are in a position to calculate the matrix elements
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In the third line we used the fact that the matrix element vanishes unless all creation
operators can be paired up with a corresponding destruction operator, then we have
collected the pairs by using the canonic fermion commutation relations.

Next, the energy of the excited states in the non-interacting system is just given by the
single-particle excitations with respect to the ground state, i.e.

E,, = Ey+ e + e — €3 — €y, (21)

where we again wrote €; = ¢y,.
Finally, using the commutation relations
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which directly follow from the definition n; = c;-rcl-, the occupation number expectation
value in the excited state is found to be
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Inserting all the parts into Eq. (14), we have
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Inspection of the last expression shows that, depending on the external momentum and
spin arguments k and o, only one pair of Kronecker ¢’s in the large parenthesis will make
a finite contribution: Consider, e.g., o =1 and k < kp; then the large parenthesis reduces
t0 (O, — k), but for k = ky the factor (1 —n) ) = 0, so that only the term with
k = k; remains. We hence find
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Eliminating the summation over ks with the Kronecker ¢ and replacing the momentum
sums by integrals as usual, we have for the first case, k < kp,
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In order to evaluate the integrals we now introduce new variables
k+ki kot+ks ks — k3
= = = . 33
p . o q . (33)

For simplicity we also fix the external momentum to the Fermi surface, so we can write
k = krk. With these definitions the boundary conditions for the integrals translate to
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We thus need to compute
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where a factor of k% /8 is the Jacobian from the change of variables and a factor of 4/k
was extracted from the integrand’s denominator. As the whole system is isotropic, the
value of the full expressmn cannot depend on the direction of the momentum k. We can
therefore average 5nk, over all directions by integrating over k and dividing by the solid

angle 4m. Changing the order of integrations, we then perform this integral before the
others, i.e. we integrate the integrand for fixed p, g and choose ¥ to be the angle between
the vectors p and k:
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where in the last step we substituted ¢ = cos? and used 0(1 — \/z) = (1 — z) for = > 0.
The step function vanishes for ¢t < p/2, therefore we can account for it by adjusting the
integration range accordingly and obtain
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only the step functions depend on the angle between p and q. We therefore change to
spherical coordinates [d*q — [;*dg fOQﬂ d¢ [;7dY ¢*sin® and choose the z-axis to point
in the direction of p such that ¥ denotes the angle between p and q. Then the integral
over ¢ is trivial and we need to compute
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Since the first step function equals one for ¢ > —x and the second one for ¢ < x, their
product vanishes for all ¢ if z < 0. If, on the other hand, x > 1 then the integrand
is equal to one over the whole integration range —1 < ¢t < 1. For 0 < z < 1, finally,
f_ll dtO(z +t)0(x —t) = [ dtl = 2z. We therefore find
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We hence arrive at
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The computation of 5n§j2 is similar to that of 5nk;. The main difference is that we invert

the sign of the argumegts of the Heaviside #-functions. Thus, using the definitions in
Eq. (33), the boundary conditions given in Eq. (35) become
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and we have to compute
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Carrying out the integration over k as before, we obtain
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and the corresponding result of the integration in Eq. (46) is
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Through similar argumentation that leads to Eq. (58)

1 O) q> \/4_p27
/ Wsind 62— |p+q)i2—Ip—q) =L JI-pP>q>2-p, (58
! 2, q<2—np.
Therefore,

2 2 p—2 2
5n(2+>:_(mUkF) /dp[/ dg pq(p +2)
0

kg (27Th)4 4—p2 (p + 2)2 - q2
P2 2p%*(p + 2)
+/0 dg [(p+2)2_q2](4_p2_q2)] (59)
_ _%—Z’;j <—§—|—2ln2>. (60)

As a result, the size of the discontinuity of the density distribution at the Fermi energy
is reduced to
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In three dimensions, we can use the density of states at the Fermi energy
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(since n = k2./(37%)) to simplify the result to its final form
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