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Aufgabe 9.1 Entropy

From lecture notes (3.24) we have: S = 3Nkp logT + Nkp logV + S,.
From lecture notes (11.40) we have: S = 2Nkp logT + Nkg log & + So.
Obviously (3.24) is false from two points of view:

a) S isn’t extensive.

b) S leads to the Gibbs Paradox.

Show that with the substitution V' — % both the problems are solved.

Aufgabe 9.2 Osmotic pressure

Consider the following experimental arrangement for the measurement of the osmotic
pressure:
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A semipermeable wall (through which only the solvent can pass) separates the solvent
(e.g. water, section 2, left hand side of the figure) from the concentrated solution (e.g.
sugar in water, section 1, right hand side of the figure).
Derive again the expression for the osmotic pressure (lecture notes, page 94), using the
chemical potential. Where is the higher column? Why?

Aufgabe 9.3 Nucleation

Consider a d-dimensional elastic membrane (elasticity C) in d 4+ 1 dimensions, which
can be deformed along the d 4 1th “transversal” direction (see figure). This transversal
deformation can be described with u(%), where ¥ € R?. The deformation energy is o< (Vu)?
and the potential for the deformation is made up of a periodic part and of a coupling to
a constant external force F"

V(u) = Vo (1 — cos(kou)) — Fu.

Then the free energy for the membrane is given by
i |C 2
Hlu) = | d®z E(Vu) + V(u)

1. What is the potential as a function of external force? Which possibilities exist for
the mobility of the membrane along the transverse direction? Define and determine
a critical external force F.



2. Let’s consider now F' < F, and d > 2. Calculate the approximate energy U(R) of a
nucleus with radius R. This is a local deformation of the membrane, which disap-
pears outside R and is constant inside of R with u = ug = i—g Make the assumption
that the elastic and potential energy are of the same size and the deformation in-
creases from 0 to uy with R in a small area of width w . Determine the critical
radius R, above which the nucleus begins to grow. Why does U(R.) correspond to
an activation energy, and how does it vary with F'?

3. With Vj; = 0 the membrane moves according to v = F/n, with a speed v and a
friction coefficient 7. Determine for our case with periodic potential and temperature
T > 0, the drift velocity v as a function of the force F'; consider, in particular, the
cases FF— 0 and F > F,.

4. In one dimension (elastic line) wu(x) = k% arctan(e®™) with a constant w is a
minimum of the above energy function (free energy equation) for F = 0 which can
represent a flank of the nucleus. The energy for a nucleus with radius R and with
such two flanks is then

U(R) ~ 2B (1 — e ®/%) — FygR .

Calculate the critical radius R, and the activation energy. What is different if ' — 0
and what are the consequences for the speed of the line?
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FIG. 13. Elastic manifold trapped in a (tilted) washboard po-
tential. Top: One-dimensional elastic string with a finite seg-
ment (nucleus) activated to the next valley. The activation ener-
gy 2E; involves the production of two kinks and remains al-
ways finite—the string is never in a “glassy” state. Bottom:
Two-dimensional elastic surface with a finite nucleus activated
to the next valley. The activation energy involves the creation
of a one-dimensional (thin) wall, which costs an energy 2#rE,,
where r is the radius of the nucleus. If the nucleus is large
enough, r > r,, it expands and the elastic manifold moves on to
the next valley. The critical radius 7, increases with decreasing
driving force F, r.=E; /uo-F, and the manifold shows glassy
behavior with a diverging activation energy at vanishing driving
force, U(F)=mEZ/u.F.

More background on the task in: G. Blatter et al., Rev. Mod. Phys. 66 1125, (1994).



