Quantum Mechanics II Exercise 7

FS 09

Prof. C. Anastasiou

Exercise 7.1 Scattering cross section in the first Born approximation

a) Calculate the differential scattering cross section in the first Born approximation for the spherical-box potential

$$V(\mathbf{r}) = V(r) = -V_0 \Theta(r_0 - r). \tag{1}$$

- b) Show that at low energy, $kr_0 \to 0$, the scattering becomes isotropic and find the total scattering cross section σ .
- c) Argue that in the low-energy limit the first Born approximation is only valid for sufficiently shallow potentials, i.e., $V_0 \ll \hbar^2/mr_0^2$.

Exercise 7.2 Low energy resonances and the Breit-Wigner formula

In the following we are considering a particle that scatters at a potential $V(\mathbf{r})$ in three space dimensions. Assume that the potential is spherically symmetric, i.e., $V(\mathbf{r}) = V(r)$ and that there exists a radius R > 0 ($R < \infty$) such that V(r) = 0 for all $\mathbf{r} \in \{\mathbf{r} : r > R\}$. We have seen in the discussion of 2-body problems with Coulomb interaction (also spherically symmetric) that a separation ansatz with spherical harmonics leads to the ordinary differential equation

$$\left(-\partial_r^2 + \frac{l(l+1)}{r^2} + \Phi(r)\right) r R_l(k,r) = k^2 r R_l(k,r), \tag{2}$$

with

$$\Phi(r) := \frac{2m}{\hbar^2} V(r), \ k := \frac{\sqrt{2mE}}{\hbar}.$$
(3)

Note that the energies E are taken from the positive, continuous spectrum since we are only interested in scattering states. For r > R the partial wave expansion leads to the wave function

$$R_l^{>}(k,r) = \frac{1}{2} \left(h_l^*(kr) + e^{2i\delta_l(k)} h_l(kr) \right), \tag{4}$$

where $h_l(x) = j_l(x) + in_l(x)$ denotes the *l*-th spherical Hankel function. Let $R_l^{<}(k, r)$ be the corresponding wave function inside the ball $\{\mathbf{r} : r < R\}$ and define

$$\alpha_l := \partial_r \log R_l^{<}|_{r=R} \,. \tag{5}$$

The goal of this exercise is to determine the behavior of the partial cross sections $\sigma_l(E)$ close to their maxima E_r (the resonance energies) in case of low-energy scattering, i.e., $kR \ll 1$.

a) Use the continuity of the total wave function to show that

$$\cot \delta_l = \frac{k \partial_x n_l(x) - \alpha_l n_l(x)}{k \partial_x j_l(x) - \alpha_l j_l(x)} \bigg|_{x = kB}.$$
 (6)

b) Express the total cross section σ_l of the l-th partial wave,

$$\sigma_l = \frac{4\pi}{k^2} (2l+1) \sin^2 \delta_l,\tag{7}$$

as a function of $\cot \delta_l$. When is σ_l maximal in case of low-energy scattering? The corresponding energy eigenvalues E_r are the low lying resonance energies. Hint: Use the asymptotic expressions

$$j_l(x) \approx \frac{x^l}{(2l+1)!!}, \ n_l(x) \approx -\frac{(2l-1)!!}{x^{l+1}}, \ \text{for } x \to 0,$$
 (8)

with $(2l \pm 1)!! := 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2l \pm 1)$.

c) Show that the Breit-Wigner formula

$$\sigma_l(E) \approx \frac{4\pi}{k^2} (2l+1) \frac{(\Gamma/2)^2}{(E-E_r)^2 + (\Gamma/2)^2}$$
 (9)

approximates $\sigma_l(E)$ around a resonance energy E_r .