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Exercise 3.1 Basics of QFT

Consider the Lagrangian for a real scalar field ¢(x):
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a) The principle of least action states that the action S = [ d*zL has to be an extremum, so
that small variations vanish (65 = 0). Use this fact to derive the Euler-Lagrange equation
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Compute it explicitly for the real scalar field.

b) Use canonical quantisation to derive the Feynman propagator Dp(x —y) = (0|T¢(x)d(y)|0).

Hint: first compute the Hamiltonian of the system, apply the usual commutation relations,
and then rewrite the field ¢ in terms of creation and annihilation operators.

Exercise 3.2 Gaussian integrals

Using the known result for the Gaussian integral
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where 27 = (21,...,2y) and A is a symmetric, positive definite N x N matrix.

Remark: taking the limit N — oo, one can see that this identity holds formally for operators, so

that for the action

Sy = —% /d4x (0% + m?)¢

one has
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Exercise 3.3 Discretisation of the path integral

Consider the action for a free real scalar field of mass m
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We want to evaluate exactly the path integral
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in a finite volume V.



First, we replace the field ¢(x) defined on a continuum of points by variables ¢(z;) defined at
the points x; of a square lattice. The integration measure becomes
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up to an irrelevant constant.

a) The field values ¢(z;) can be represented by a discrete Fourier series:
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where kly = 27n*/L with n* an integer, and V = L*. Since ¢(x) is real the Fourier coefficients

have to obey ¢*(k) = ¢(—k).

Rewrite the action Sy in terms of the Fourier coefficients ¢(ky,).

b) Since the ¢(k,) are complex, one can integrate separately their real and imaginary part.
Show that the integration measure can be written

Do(x) = [] dRed(kn)dTm p(kn)
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and write the action Sp also in terms of Re ¢(ky,) and Im ¢(ky,).

c¢) Using the results of exercise 2, perform the path integral. You should obtain
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Exercise 3.4 Four-point function

Consider the generating functional of the free Klein-Gordon theory
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The four-point function is then
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Compute it and interpret the result pictorially.
Hint: use the basic axiom of functional derivation in 4 dimensions
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For more complicated functions of J, one simply uses the ordinary Leibniz rule for derivatives
of composite function, e.g
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