Quantenmechanik II, Serie 1.

FS 2010

1. Die Abbildung Ad_H und ihre Inverse

Sei $\mathcal{B}(\mathcal{H})$ die C^* -Algebra der beschränkten Operatoren über einem Hilbertraum \mathcal{H} . Wir definieren die Unterräume $\mathcal{S} := \{A \in \mathcal{B}(\mathcal{H}) \mid A = A^*\}$ und $\mathcal{A} := \{A \in \mathcal{B}(\mathcal{H}) \mid A = -A^*\}$. In der Vorlesung wurde für $H \in \mathcal{S}$ der Operator

$$Ad_H : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$$

durch

$$Ad_H(A) := [H, A]$$

definiert.

i. Zeigen Sie, dass $\mathcal{B}(\mathcal{H}) = \mathcal{S} \oplus \mathcal{A}$ gilt. Zeigen Sie weiter, dass

$$\mathrm{Ad}_H : \mathcal{S} \to \mathcal{A},$$

 $\mathrm{Ad}_H : \mathcal{A} \to \mathcal{S}$

gilt.

Sei nun $\Delta \subset \sigma(H)$ eine vom Rest des Spektrum isolierte Teilmenge des Spektrums von H. Weiter sei P_{Δ} der dazugehörige Spektralprojektor. Wir setzen $\overline{P_{\Delta}} := \mathbb{1} - P_{\Delta}$ und definieren für $A \in \mathcal{B}(\mathcal{H})$

$$A_d := P_{\Delta} A P_{\Delta} + \overline{P_{\Delta}} A \overline{P_{\Delta}},$$

$$A_{od} := P_{\Delta} A \overline{P_{\Delta}} + \overline{P_{\Delta}} A P_{\Delta}.$$

Ähnlich wie oben induziert dies eine eindeutige Zerlegung von $\mathcal{B}(\mathcal{H}) = \mathcal{B}(\mathcal{H})_d \oplus \mathcal{B}(\mathcal{H})_{od}$.

ii. Zeigen Sie, dass

$$Ad_{H_d} : \mathcal{B}(\mathcal{H})_d \to \mathcal{B}(\mathcal{H})_d,
Ad_{H_d} : \mathcal{B}(\mathcal{H})_{od} \to \mathcal{B}(\mathcal{H})_{od},
Ad_{H_{od}} : \mathcal{B}(\mathcal{H})_{od} \to \mathcal{B}(\mathcal{H})_d,$$
(1)

gilt.

iii. Die Abbildung Ad_H hat im Allgemeinen keine Inverse, da Ad_H auf denjenigen Operatoren verschwindet, die mit H kommutieren. Falls jedoch $\operatorname{Ad}_{H_d}(A_{od}) \neq 0$, kann die Abbildung wegen (1) invertiert werden. Wir setzen

$$\operatorname{Ad}_{H_d}^{-1}(A_{od}) := \int \int \frac{1}{\lambda - \lambda'} dE_{H_d}(\lambda) A_{od} dE_{H_d}(\lambda').$$

Zeigen Sie, dass diese Abbildung das Gewünschte leistet.

2. Projektionsmethode von Feshbach

i. Lesen Sie das Kapitel 7.2 im Skript: Die Projektionsmethode von Feshbach.

Ziel dieser Aufgabe ist, es die Gleichung (62) iterativ zu lösen. Sei f eine stetig differenzierbare reelle Funktion auf dem Interval $I := (x_0 - \delta, x_0 + \delta), \delta > 0$. Falls die Gleichung f(x) = 0 genau eine Lösung auf dem Interval I hat, und falls f' nirgends gleich null ist, so kann die Lösung iterativ mit der Newton Methode gesucht werden. Sei

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)},$$
 (2)

dann konvergiert die Folge $\{x_n\}_{n\geq 0}$ gegen das gesuchte x. Die Konvergenzgeschwindigkeit ist unter obigen Annahmen mindestens quadratisch.

ii. Vergewissern Sie sich, dass Sie die Definition (2) verstehen, ohne die Konvergenzfrage zu diskutieren.

Sei nun E_0 ein isolierter, nicht entarteter Eigenwert zum Hamilton Operator H_0 . Sei weiter $H := H_0 + \varepsilon V$, wobei V eine (Kato-) kleine Störung mit dem Störungsparameter ε . Weiter sei u der Eigenvektor zum Eigenwert E_0 , i.e., $H_0 u = E_0 u$. Die Gleichung (62) im Skript lautet dann

$$E = E_0 + \varepsilon \langle u, Vu \rangle + \varepsilon^2 \langle (1 - P)Vu, \frac{1}{E - H_0 - \varepsilon V_{\perp}} (1 - P)Vu \rangle.$$
 (3)

iii. Zeigen Sie wie im Skript, dass diese Gleichung für E eine eindeutige Lösung hat für ε klein genug. Benutzen Sie nun das Newton-Verfahren, mit Startpunkt E_0 , um diese Gleichung bis Ordnung ε^2 zu lösen. Dazu ist lediglich ein Iterationsschritt nötig. Um das Resultat in eine Potenzreihe in ε zu entwickeln, brauchen wir jedoch noch ein Werkzeug aus der Funktionalanalysis:

Seien A und B zwei lineare Operatoren auf dem Hilbertraum. Beweisen Sie die sogenannte zweite Resolventenformel: Sei z weder im Spektrum von A noch von B, dann gilt

$$\frac{1}{z-A} - \frac{1}{z-B} = \frac{1}{z-B}(A-B)\frac{1}{z-A} \,,$$

insofern die rechte Seite definiert ist. Folgern Sie daraus, dass-wenigstens formal-

$$\frac{1}{E - H_0 - \varepsilon V_\perp} = \frac{1}{E - H_0} \left(\mathbb{1} + \sum_{n=1}^{\infty} \left(\varepsilon V_\perp \frac{1}{E - H_0} \right)^n \right)$$

gilt. Dies ist eine sogenannte Neumann-Reihe in εV_{\perp} .

Kombinieren Sie nun das Resultat aus dem Newton-Verfahren mit der Neumann-Entwicklung, um Gleichung (65) im Skipt zu erhalten.

iv. Eine Alternative zum Newton-Verfahren ist die folgende Methode: Wir entwickeln E in eine Potenzreihe in ε , d.h., wir schreiben $E = \sum_{i=0}^{\infty} E_i \varepsilon^i$. Somit können wir Gleichung (62) auch schreiben als

$$E = \sum_{i=0}^{\infty} E_i \varepsilon^i = E_0 + \varepsilon \langle u, Vu \rangle + \varepsilon^2 \langle (1-P)Vu, \frac{1}{E_0 - H_0 - \varepsilon (V_{\perp} - \sum_{i=1}^{\infty} E_i \varepsilon^{i-1})} (1-P)Vu \rangle.$$

Durch Koeffizientenvergleich können nun die E_i systematisch bestimmt werden. Bestimmen Sie E_2 und E_3 , indem Sie eine Neumann-Reihe in $\varepsilon(V_{\perp} - E_1 - \sum_{i=2}^{\infty} E_i \varepsilon^{i-1})$ ansetzen.

3. Das Doppeltopf-Potential

Wir betrachten den Doppeltopf- (double well potential) Hamiltonoperator

$$\widetilde{H} := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} - \frac{\omega^2}{2}x^2 + \frac{g}{4}x^4$$
 (4)

Man beachte, dass dieser Operator für g=0 weder demjenigen des harmonischen Oszillators entspricht, noch nach unten beschränkt ist, d.h. es gibt keinen Grundzustand. Sei deshalb g>0, dann dominiert der x^4 -Term für grosse x, und der Doppeltopf-Hamiltonoperator hat ein nichtleeres Punktspektrum. Eine störungstheoretische Behandlung des Problems ist wie folgt möglich. Wir reskalieren zuerst die Ortskoordinate $x\mapsto \omega^{-1/2}x$. Somit erhalten wir

$$\widetilde{H} = \omega \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} - \frac{1}{2}x^2 + \frac{g}{4\omega^3}x^4 \right) \,, \tag{5}$$

Somit ist ω eine globale Konstante, und es genügt, die Terme in der Klammer zu untersuchen. Das Potential $\widetilde{V} := -\frac{1}{2}x^2 + \frac{g}{4\omega^3}x^4$ hat zwei Minima bei $\pm x = \pm \sqrt{\frac{\omega^3}{g}} =: \pm x_0$. Weiter ist es nützlich, das Potential umzudefinieren: Sei nun

$$V := -\frac{1}{2}x^2 + \frac{g}{4\omega^3}x^4 + \frac{\omega^3}{4g} = -\frac{1}{2}x^2 + \frac{1}{4x_0^2}x^4 + \frac{x_0^2}{4}, \tag{6}$$

dann gilt $V(\pm x_0) = 0$. Analog setzen wir $H := -\frac{d^2}{dx^2} + V$. Sei nun $V_{\pm}(y) := V(\pm x_0 + y)$, dann ist es nicht schwer nachzurechnen, dass

$$V_{\pm}(y) = y^2 \pm \frac{y^3}{x_0} + \frac{1}{4x_0^2} y^4.$$
 (7)

Die Potentiale V_{\pm} sind also die Summe des Potentials eines harmonischen Oszillators und von Störtermen im Parameter x_0^{-1} . Sei nun

$$H_{\pm} := -\frac{\mathrm{d}^2}{\mathrm{d}y^2} + V_{\pm} \,.$$
 (8)

Die Eigenwerte $E_{\pm}(g,n)$ von H_{\pm} sind für $x_0^{-1} \ll 1$ approximativ gegeben durch

$$E_{\pm}(g,n) = E_{\pm}^{0}(n) + x_{0}^{-1}E_{\pm}^{1}(n) + x_{0}^{-2}E_{\pm}^{2}(n) + O(x_{0}^{-3}),$$
(9)

wobei n die Quantenzahl ist, welche die Eigenwerte des hamonischen Oszillators indiziert. Seien $\{\phi_n\}_{n\geq 0}$ die Eigenfunktionen des harmonischen Oszillators, also die Hermiteschen Funktionen.

i. Finden Sie Ausdrücke für $E^0_{\pm}(n)$, $E^1_{\pm}(n)$ und $E^2_{\pm}(n)$, ohne dabei die Integrale mit den Hermiteschen Funktionen explizit zu berechnen. Zeigen Sie weiter, dass $E^1_{+}(n) = E^1_{-}(n)$ und $E^2_{+}(n) = E^2_{-}(n)$ gilt.

Es ist nicht schwer zu zeigen, dass allgemein $E_{+}(n) = E_{-}(n)$ gilt.

ii. Diese störungstheoretische Untersuchung lässt vermuten, dass jedes Energieniveau zweifach entartet ist: Die Eigenfunktionen zu $E_{\pm}(n)$ werden um $\pm x_0$ konzentriert sein mit $E_{+}(n) = E_{-}(n)$. Weshalb kann diese Aussage nicht korrekt sein?

Seien nun $\phi_+(x) = \pi^{-1/4} e^{-(x-x_0)^2/2}$ und $\phi_-(x) = \pi^{-1/4} e^{-(x+x_0)^2/2}$ die Eigenfunktionen des Grundzustandes in nullter Ordnung.

- iii. Argumentieren Sie, dass der approximative Grundzustand von H gleich $\frac{1}{\sqrt{2}}(\phi_+ + \phi_-)$ ist.
- iv. Wir versuchen nun, wenigstens heuristisch, die Energieaufspaltung zwischen $\frac{1}{\sqrt{2}}(\phi_+ + \phi_-)$ und $\frac{1}{\sqrt{2}}(\phi_+ \phi_-)$ zu bestimmen. Seien $H_+^0 := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + (x x_0)^2$, $H_-^0 := -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + (x + x_0)^2$, $W_+ := \frac{1}{x_0}(x x_0)^3 + \frac{1}{4x_0^2}(x x_0)^4$ und $W_- := -\frac{1}{x_0}(x + x_0)^3 + \frac{1}{4x_0^2}(x + x_0)^4$, sodass $H = H_+^0 + W_+ = H_-^0 + W_-$ gilt. Indem wir Matrixelemente betrachten, erhalten wir:

$$\begin{pmatrix}
\langle \phi_{+}, H \phi_{+} \rangle & \langle \phi_{+}, H \phi_{-} \rangle \\
\langle \phi_{-}, H \phi_{+} \rangle & \langle \phi_{-}, H \phi_{-} \rangle
\end{pmatrix} = \begin{pmatrix}
\langle \phi_{+}, H_{+}^{0} \phi_{+} \rangle & \langle \phi_{+}, H_{-}^{0} \phi_{-} \rangle \\
\langle \phi_{-}, H_{+}^{0} \phi_{+} \rangle & \langle \phi_{-}, H_{-}^{0} \phi_{-} \rangle
\end{pmatrix} + \begin{pmatrix}
\langle \phi_{+}, W_{+} \phi_{+} \rangle & \langle \phi_{+}, W_{-} \phi_{-} \rangle \\
\langle \phi_{-}, W_{+} \phi_{+} \rangle & \langle \phi_{-}, W_{-} \phi_{-} \rangle
\end{pmatrix} + O(\frac{1}{x_{0}^{2}})$$

$$= \begin{pmatrix}
1 + \delta_{d} & \delta_{od} \\
\delta_{od} & 1 + \delta_{d}
\end{pmatrix} + O(\frac{1}{x_{0}^{2}}), \tag{10}$$

wobei nun δ_d und δ_{od} Korrekturterme sind:

$$\delta_d = \langle \phi_+, W_+ \phi_+ \rangle$$

$$\delta_{od} = \langle \phi_-, W_+ \phi_+ \rangle + \langle \phi_-, H_+^0 \phi_+ \rangle.$$

Zeigen Sie, dass diese Korrekturterme der Ordnung $O(\mathrm{e}^{-a\omega^3/g}),\,a\simeq 1,\,\mathrm{sind}.$

In der Tat kann man zeigen, dass δ_{od} negativ ist. Berechnen Sie nun die approximativen Energien des Grundzustandes $\frac{1}{\sqrt{2}}(\phi_+ + \phi_-)$ und des ersten angeregten Zustandes $\frac{1}{\sqrt{2}}(\phi_+ - \phi_-)$, indem Sie die Matrix (10) diagonalisieren.

Bekannt ist folgende Aussage: Sei E(g,0) die exakte Grundzustandsenergie des Hamiltonoperators $H=\frac{p^2}{2}+V,$ dann gilt

$$E(g,0) = E_{+}(g,0) + \Delta(g,0),$$

wobei $\Delta(g,0)$ ein Fehlerterm mit der folgenden Eigenschaft ist: $\Delta(g,0) \not\equiv 0$ ist eine unendlich oft differenzierbare Funktion in g, doch ihre Taylorreihe um g=0 ist identisch null.

- v. Geben Sie ein Beispiel einer Funktion, die glatt ist, jedoch eine verschwindenden Taylorreihe um null besitzt.
- vi. Geben Sie eine qualitative Erklärung für den Term $\Delta(g,0)$.