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Carbon nanotubes

Since their discovery in 1991 [S. Iijima, Nature 345, 56 (1991)] carbon nanotubes have
been the object of an intensive research activity. Carbon nanotubes are made by rolling
a graphene sheet (a single layer of graphite) into a cylinder. Due to the (hexagonal, cf.
Fig. 2) lattice structure of graphene there are several inequivalent ways of rolling up the
sheet, depending on the orientation (w.r.t. the lattice) and circumference of the resulting
cylinder. In this exercise you will show that whereas graphene is metallic, the geometry
change imposed by rolling it up can render the nanotube semiconducting.

Exercise 5.1 Graphene

Compute the low-energy band structure of graphene within a tight-binding description
taking only nearest-neighbor hopping into account!

To get started, consider the electronic configuration of C. C has four valence electrons
which occupy 2s2 and 2p2 orbitals. The hexagonal structure of the lattice suggests that
three of these valence electrons occupy hybrid sp2-orbitals to form covalent σ-bonds with
their nearest neighbors (bonding angle 2π/3). Due to the large binding energy, there are
no low-energy excitations involving these electrons. The remaining electron occupies the
pz orbital that sticks out of the planar lattice forms weaker π-bonds with the neighboring
atoms. Based on these considerations, it seems reasonable to focus solely on the electrons
in the pz-orbitals, so that the problem reduces to one electron and one orbital per atom.

Figure 1:

Hint: Before embarking into the calculation, you may wish to refresh your memory about
the unit cell and Brillouin zone for a hexagonal lattice.

To write down the hopping Hamiltonian, divide the lattice into two sublattices A and B
as shown in Fig. 1 and introduce fermionic field operators ai and bi (i labels the site)

on these sublattices. Then argue that the hopping matrix element is the same for all ~bi
(i = 1, 2, 3) in Fig. 1 for a given site. Use the Fourier transform,
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where N is the number of unit cells and ~Ra,i (~Rb,i) is the position of the i-th site on
sublattice A (B) to obtain a Hamiltonian of the form
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Plot the band structure and show that the Fermi ’surface’ consists of two points by finding
the values of ~k for which the energy is zero.

Finally, obtain the low-energy structure by expanding the energy to leading order in small
deviations ~k around the Fermi points. The low-energy Hamiltonian can be shown to be
equivalent to the celebrated Dirac Hamiltonian for relativistic fermions (in a (2 + 1)-
dimensional space-time). Can you see what is ’relativistic’ about the dispersion relation?
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Figure 2: Carbon lattice of graphene.
{a1,a2} are the primitive vectors of the
unit cell of graphene. {Ch,T} are the
primitive vectors of the nanotube.

Figure 3: The different geometries of car-
bon nanotubes: armchair, zigzag and chi-
ral nanotubes.

Exercise 5.2 Carbon nanotubes

The orientation and circumference of a nanotube can be characterized by the so-called
chiral vector Ch = na1 + ma2 ≡ (n,m) which joins two atoms that are identified upon
rolling up the graphene sheet into a tube (see Fig. 2). Depending on the direction of
Ch, we get different geometries: armchair, zigzag and chiral nanotubes (see Fig. 3). The
names derive from the pattern observed along the section of the tube. The armchair
nanotubes correspond to a chiral vector for which n = m. The zigzag nanotubes corre-
spond to m = 0. For the chiral nanotubes it is enough to consider 0 ≤ |m| ≤ n. The
unit cell of a nanotube is spanned by the vectors {Ch,T}, where the translation vector
T = (t1a1 + t2a2) is the vector perpendicular to the chiral vector joining two equivalent
lattice sites.

For each of the following chiral vectors Ch = (5, 5), (9, 0) and (10, 0) find whether the
nanotube is metallic or semiconducting.



Hint: Think about the boundary conditions the wavefunction has to satisfy for an in-
finitely long nanotube. From the unit cell construct the Brillouin zone of the nanotubes.
The energy bands are found by evaluating the dispersion relation E(k) (calculated pre-
viously for graphene) for all reciprocal vectors k belonging to the Brillouin zone of the
nanotubes.

Exercise 5.3 Specific Heat of a Semiconductor

Calculate the specific heat of a semiconductor under the assumption kBT � Eg, where
Eg is the band gap. Show that it is given by an ideal gas-like part (3/2)n(T )kB plus a
correction, where n(T ) is the number of excitations. Is this correction small or large?
Hint: First, approximate the dispersion of both the conduction and the valence band
parabolically, with the two effective masses mv and mc. Then, calculate the chemical
potential µ from the condition, that the number of electrons in the conduction band
(ne(T )) must be equal to the number of holes in the valence band (nh(T )).


