Sheet 7

Due: 10/05/11

Question 1 [Scalar QCD]: Consider the theory of a complex scalar field interacting with gauge bosons of a group G, described by the Lagrangian

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m^{2}\phi^{\dagger}\phi - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu}_{a} , \qquad (1)$$

where ϕ lives in a given representation R of G with generators T_R^a and

$$G_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g f^{abc} A_\mu^b A_\nu^c \tag{2}$$

$$D^{\mu} = \partial^{\mu} - igT_R^a A_a^{\mu} \ . \tag{3}$$

The goal of this exercise is to derive the Feynman rules in the gauge $\partial_{\mu}A_{a}^{\mu}=0$.

(i) Add the R_{ξ} gauge-fixing Lagrangian $\mathcal{L}_{gf} = -\frac{1}{2\xi}\partial^{\mu}A^{a}_{\mu}\partial^{\nu}A^{a}_{\mu}$ and the Faddeev-Popov ghost Lagrangian $\mathcal{L}_{FP} = -\bar{c}^{a}\partial_{\mu}D^{\mu}_{ab}c^{b}$, where $D^{ab}_{\mu} = \delta^{ab}\partial_{\mu}-igA^{c}_{\mu}(T^{c}_{A})^{ab}$, with T_{A} being the generators of G in the adjoint representation. After adding the source terms for gauge bosons and scalar fields, one can write the generating functional as

$$Z[J_A, J_\phi, J_{\phi^{\dagger}}] \propto \int \mathcal{D}A \,\mathcal{D}\phi \,\mathcal{D}\phi^{\dagger} \,\mathcal{D}\bar{c} \,\mathcal{D}c \exp(iS_{\text{free}} + iS_{\text{int}} + iS_{\text{src}}) ,$$
 (4)

where S_{free} contains the kinetic terms, S_{int} contains the interaction terms, while external sources are contained in S_{src} . Determine S_{free} , S_{int} and S_{src} explicitly.

- (ii) Rewrite S_{free} and S_{int} in momentum space.
- (iii) Derive the field propagators from S_{free} .
- (iv) Derive the interaction vertices from S_{int} .
- (v) Compute the contribution of this scalar field to the β -function, and show that the full β function for this theory is

$$\beta(g) = -\frac{g^3}{(4\pi)^2} \left(\frac{11}{3} C_2(G) - \frac{1}{3} C(R) \right) , \qquad (5)$$

where $C_2(G)$ and C(R) are the Casimir operators in the adjoint and R representations, respectively.

Question 2 [Asymptotic symmetry]: Consider the Lagrangian with two scalar fields ϕ_1 and ϕ_2

$$\mathcal{L} = \frac{1}{2} \left((\partial_{\mu} \phi_1)^2 + (\partial_{\mu} \phi_2)^2 \right) - \frac{\lambda}{4!} \left(\phi_1^4 + \phi_2^4 \right) - \frac{2\rho}{4!} \phi_1^2 \phi_2^2 . \tag{6}$$

Notice that, for the special value $\lambda = \rho$, this Lagrangian has a manifest O(2) invariance, rotating the two fields into one another.

- (i) Working in four dimensions, find the β function for the two coupling constants λ and ρ , to leading order in the coupling constants.
- (ii) Write the renormalisation group equation for the ratio of couplings ρ/λ . Show that, if $\rho/\lambda < 3$ at a renormalisation scale M, this ratio flows towards the value $\rho = \lambda$ at large distances. Thus the O(2) internal symmetry appears asymptotically.
- (iii) Write the β functions for λ and ρ in $4-\epsilon$ dimensions. Show that there are non-trivial fixed points of the renormalisation group flow at $\rho/\lambda = 0, 1, 3$. Which is the most stable? Sketch the pattern of coupling constant flows.

Question 3 [The Gross-Neveu Model]: The Gross-Neveu model is a two spacetime dimensional model of fermions with a discrete chiral symmetry. Its Lagrangian is given by

$$\mathcal{L} = i \,\bar{\psi}_i \,\partial \!\!\!/ \psi_i + \frac{1}{2} g^2 (\bar{\psi}_i \psi_i)^2 \,\,\,\,(7)$$

where $i=1,\ldots,N$ labels the different fermions. The kinetic term of the two-dimensional fermions is built from matrices γ^{μ} that satisfy the two-dimensional Dirac algebra. These matrices can be taken to be the 2×2 matrices

$$\gamma^0 = \sigma^2 , \qquad \gamma^1 = i \, \sigma^1 , \qquad (8)$$

where σ^i are the Pauli matrices. Define

$$\gamma^5 = \gamma^0 \gamma^1 = \sigma^3 \ . \tag{9}$$

(i) Show that the theory is invariant with respect to

$$\psi_i \mapsto \gamma^5 \psi_i \ , \tag{10}$$

and that this symmetry forbids the appearance of a fermion mass term.

(ii) Compute $\beta(g)$ and show that the model is asymptotically free.