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Topics in this lecture

How do we study the structure of composite particles?
Is the proton an elementary particles?
If not, what do we see inside the proton?
Are there only charged partons inside the proton?
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Probing a charge distribution
To probe a charge distribution in a target we can scatter electrons on it and 
measure their angular distribution
The measurement can be compared with the expectation for a point charge 
distribution
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Proton is not a “point”
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Ł
“The Discovery of the Point-Like Structure of Matter” 4 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

The first electron scattering measurements at Stanford were made using carbon targets. 
Scattering from hydrogen was first observed using a CH2 target, although the first published data 
on hydrogen came from measurements using high-pressure gas targets. The early data indicated 
that the “proton was not a point”, that there were contributions from magnetic scattering, and 
also that the magnetic and electrical sizes were comparable. 
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Figure 3 First published results on electron-proton elastic scattering measured at the Mark III 
accelerator at Stanford. 

These very direct measurements of the proton’s extended charge and magnetic moment 
distributions were a major event in high energy physics in the mid-1950s. Measurements on 
hydrogen (and deuterium) targets continued at energies up to 1 Gev. The electron community 
began to consider electron accelerators with even higher electron energies. By this time, it had 
been demonstrated (at Cornell and elsewhere) that scattering experiments could be performed at 
electron synchrotrons using internal targets or external beams. CEA, DESY and SLAC were soon 
under construction.  

In the original proposal for SLAC (1957), electron scattering was mentioned as an 
extension of the successful experiments at Stanford’s Mark III linac, and as experiments where 
violations of QED might be observed. In a 1960 summer study at SLAC, J. Cassels produced a 
more sophisticated analysis of electron scattering, finding that there might still be lots to learn 
from elastic scattering at SLAC energies. 

In 1963 a collaboration of physicists from MIT, Caltech and SLAC began to think 
seriously about scattering experiments at SLAC, and the equipment that would be needed to 
make such measurements. 
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Structureless point-like target does not describe the data!
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e--m scattering in the lab frame
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Electron-proton scattering
The scattering picture used so far needs to be extended for a composite object
The invariant mass spectrum shows the elastic peak, excited baryons followed by an  
inelastic smooth distribution
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Hadronic tensor - 1

The most general form of the tensor W depends on gmn and on the momenta p and q
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Hadronic tensor - 2
Only two independent inelastic structure functions (W1 and W2)
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Each structure function has two independent variables

The invariant mass of the hadronic system in the final state is

Dimensionless variables

[
Bjorken
scaling variable

square of transferred four-momentum

energy transferred to the nucleon
by the scattering electron
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Kinematic phase-space
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x = 1→ −q2 = 2Mν →W 2 = M2

Elastic scattering

Line of constant 
invariant mass

Line of constant 
momentum fraction
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Cross section
We can now use the hadronic tensor to calculate the matrix element
In the laboratory frame:
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Integrating on the outgoing electron energy
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Increasing spatial resolution
The key factor for understanding the proton substructure is the wavelength of the 
probing photon
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Bjorken Scaling
In 1968 J.Bjorken proposed that in the structure functions should depend 
only on the ratio n/q2 (proportional to x) in the limit q2→∞ and n→∞
In other words: at large Q2≡-q2 the inelastic e-p scattering is viewed as 
elastic scattering of the electron on free “partons” within the proton
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SLAC-MIT experiment

13
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SLAC-MIT experiment
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Ł
“The Discovery of the Point-Like Structure of Matter” 6 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 

There were two common ways of defining the inelastic form factors in the 1950s, and 
that history has left us using a mixture of parameters from the two expressions for the cross-
section. In the end the virtual photon approach did not simplify the physics, but we still talk 
about R, the ratio of longitudinal to transverse virtual photons, along with the structure functions 
W1 and W2 . 

In the initial planning of the SLAC experimental facilities, the kinematics and the 
estimates of cross-sections for elastic scattering and for photoproduction of pions provided the 
main design guidelines for the equipment. It was important to have sufficient resolution to 
cleanly separate states that differed by a single pion mass in photoproduction or to separate the 
excited states in inelastic scattering. 

I will not describe the spectrometer facility we built in End Station A, since that has been 
done many times and details are available in the literature. We built three spectrometers capable 
of analyzing singly charged particles with moment of 20, 8, and 1.6 Gev/c. The solid angle 
acceptances were 0.1, 1, and 5 milli-steradians respectively. The scale of the devices was quite 
impressive for its day.  

TARGET 
POSITION

8 Gev SPECTROMETER

20  Gev SPECTROMETER

      1.6 Gev
SPECTROMETER

MONITORS
BEAM

 

Figure 5 Spectrometer facility at the Stanford Linear Accelerator. Each of the Spectrometers 
can be rotated about the target position to vary the angle of scattering. 

The basic design philosophy was conservative – SLAC was a very visible project, and it 
was important to the laboratory that reliable results be generated in the early running. It seemed 
unlikely that the experiments could be reproduced soon at another accelerator, so any wrong 
answers were likely to mislead for a long time. Beam time would be very costly at SLAC, so we 
tried hard to make the spectrometer complex efficient. This led us to incorporate a mid-sized 
computer dedicated to our data acquisition and on-line analysis. Our computer system became a 
model for those who could afford such things. 
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First hints of Bjorken’s scaling
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Ł
“The Discovery of the Point-Like Structure of Matter” 10 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 
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Figure 8 The measured form factor W2 plotted against the energy loss ". The magnified portion 
shows how W2 depends on Q2 over a range in ". 

For a small range of values of ", the value of W2 doesn’t seem to vary with Q2 (an even 
stronger constraint than scaling). Kendall prepared a second plot, this time of " W2 for two cases, 
corresponding to the two extreme cases of the value of R. 

 

Figure 9 The measured proton structure function, F2, plotted against "/Q2, showing 
approximate scaling beyond the resonance region (as predicted by Bjorken). 

Ł
“The Discovery of the Point-Like Structure of Matter” 14 
presented by Professor R.E. Taylor on May 24, 2000 
The Royal Society Discussion Meeting – The Quark Structure of Matter 
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Figure 13  Values of "W2 vs. Q2 at ! = 4, showing that "W2 does not vary with Q2, (ie. "W2 
“scales”) 

So things were in pretty good shape, but nothing is ever perfect. As the data improved, it 
became clear that scaling was not working over the full range of our data (it turns out that ! = 4 
is not a good place to look for scale breaking). At first, the scale breaking was observed only 
below W = 2.6 Gev, and we wondered if the "resonant region" was more extensive than we had 
assumed, even though we were seeing no visible peaks between 2 and 2.6 Gev. So for a while we 
made “scaling plots” including only data having W >2.6 Gev. Another solution was to use a 
slightly different scaling variable, !’= W2 /Q2 – (this variable is equivalent to 2M"/Q2 in the 
limit as ", Q2, and W go to infinity, so Bjorken’s hypothesis was still valid). We could detect 
only minor deviations from scaling in !’, and used !’ in our presentations for a couple of years. 

By the summer of 1971, most people were at least aware of our results and the quark-
parton interpretation of our data. A growing number of theorists were hard at work, and soon the 
concepts of “asymptotic freedom” and “confinement” (sometimes called “infra-red slavery”) led 
on to Quantum Chromodynamics. These advances actually predicted scale breaking, so we could 
go back to ! (or x) as the scaling variable.  

It was in 1971 that the original SLAC-MIT collaboration split into two independent 
groups. There was, at that time, some disagreement about what to do next. Most of the SLAC 
contingent worked on an experiment at 4º (and at 58 – 60°), while all the MIT scientists and a 
couple of people from SLAC repeated the hydrogen measurements at 18º, 26º and 34º along with 
new measurements on deuterium. The breakup was so friendly that many people don't realize that 
it ever happened and make no distinction between SLAC-MIT and MIT-SLAC. 

Late in 1969 we had heard rumors that an analysis of CERN neutrino data was indicating 
that the neutrino scattering cross-sections were proportional to the neutrino energy, as expected 
in the quark-parton picture. By 1972 a major independent confirmation of the quark model was 
announced by Don Perkins at the ICHEP conference in Batavia. The Gargamelle data showed 

First data at 6°: F2 plotted as function of 
the scaling variable n/Q2 is roughly
independent on Q2

More data at different angles:
F2 for a fixed v does not depend on the
transferred momentum Q2

Friedman, Kendal and Taylor - 1969
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Parton distributions
Partons carry a different fraction x of the proton’s momentum and energy
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The probability that the struck parton carries a fraction x of the proton 
momentum is usually called parton distribution or parton density function
Total probability must be equal to one:

R.Feynman - 1969
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Structure function revisited
In the Feynman’s parton model the structure functions are sums of the 
parton densities constituting the proton
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The result 2xF1=F2 is known as Callan-
Gross relation and is a consequence of 
quarks having spin 1/2
Comparing e-p with e-m scattering cross 
sections (with m≡quark mass):

The parton carries 
a fraction x of the 
proton mass M



1
x

F ep
2 =

�
2
3

�2

[up + ūp] +
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Proton/Neutron parton densities

We write the equivalent structure function for the neutron as
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Proton and neutron parton densities are correlated
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Constraints to parton densities
We assume the three lightest quark flavours (u,d,s) occur with equal probability in the 
sea

19

us = ūs = ds = ds = ss = ss = S(x)
u(x) = uv(x) + us(x)
d(x) = dv(x) + ds(x)

Combining all constraints:

At small momenta (x~0) the structure function is dominated by low-momentum 
quark pairs constituting the “sea”. For x~1 the valence quarks dominate and the ratio 
F2en/F2ep becomes
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Ratio of structure functions

20

low momentum
fractions

(sea)

Partons carry
most of the hadron

momentum
(valence)
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Summary of F2 proton

21
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How about gluons?
Summing over the momenta of all partons we should reconstruct the total 
proton momentum:

22

Neglecting the small fraction carried by the strange quarks we have and 
using the results of experimental data

Experimental data indicate that about 50%
of the proton momentum is carried by neutral partons,

not by quarks!
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Gluons and the parton model
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Gluon emission: contribution to F2
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g*

Proton
p pi=yp zpi=xp
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Splitting function:
probability of a quark to emit
a gluon and reduce momentum by a fraction z
N.B.: divergent for soft gluons (z→1)
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violation!
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dependence
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Experimental techniques

25



V. Chiochia (Uni. Zürich) – Phenomenology of Particle Physics, FS2011

HERA accelerator complex

26
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Kinematic region

27

Larger sensitivity 
to sea quarks (gluons)

Larger 
momentum 
transfers

(large electron
scattering angles)



V. Chiochia (Uni. Zürich) – Phenomenology of Particle Physics, FS2011

HERA experiments: ZEUS

28

ZEUS Experiment

Subdetectors:

1) Central tracker
electron momentum
charged particles in jet
muon momentum

2) Electromagnetic calorimeter
electron (and photon) energy

3) Hadronic calorimeter
jet energy

4) Muon detectors:
muon ID and momentum 
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Deep Inelastic Scattering event 
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Electron (30 GeV) Proton (820 GeV)

Scattered 
electron

Quark jet

Scattered 
electron

Scattered 
electron

Quark 
jet

Energy (GeV)

Phi (degrees)

Theta (degrees)

Electromagnetic calorimeter

Hadronic calorimeter

ue

E’

e p →e jet X
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Events with two jets
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Transverse view Longitudinal view

Jet1

Jet2

Muon

Jet1

Jet2

Muon

e p → e jet1 jet2 X

partonic subprocess: g*g →q anti-q

Only possible
with gluons!
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Kinematic reconstruction
To fully characterize a deep inelastic scattering event kinematics both Q2 
and x (or y) have to be measured

31

4.4 Hadronic energy determination

The hadronic energies, unlike the case of the positron energy, are not corrected for energy loss in
the passive material. Instead, the transverse momentum of the positron, pTe, calculated using
the positron energy corrected as described in the last section, is compared to the pTh of the
hadrons in both the detector simulation and data. From this comparison, uncertainties in the
determination of the hadronic energy are estimated. The mean pTh

pTe
as a function of γ

H
agrees

within 3% between MC simulation and data for the entire range of kinematics covered in this
paper. The pTh

pTe
distributions in bins of γ

H
are compared (see Sect. 6) for MC simulation and

data, and are in good agreement. An uncertainty of ±3% is assigned to the hadronic energy
measurement, based on these comparisons.

5 Kinematic reconstruction

In deep inelastic scattering, e(k) + p(P ) → e(k′) + X, the proton structure functions are
expressed in terms of the negative of the four-momentum transfer squared, Q2, and Bjorken x.
In the absence of QED radiation,

Q2 = −q2 = −(k − k′)2, (5)

x =
Q2

2P · q
, (6)

where k and P are the four-momenta of the incoming particles and k′ is the four-momentum
of the scattered lepton. The fractional energy transferred to the proton in its rest frame is
y = Q2/(sx) where s is the square of the total center of mass energy of the lepton-proton
collision (s = 90200 GeV2).

The ZEUS detector measures both the scattered positron and the hadronic system. The four
independent measured quantities E ′

e, θe, δh and pTh, as described in the previous section, over-
constrain the kinematic variables x and Q2 (or equivalently, y and Q2).

In order to optimise the reconstruction of the kinematic variables, both the resolution and
robustness against possible systematic shifts (stability) of each measured quantity must be
considered.

For the present analysis, a new method (PT) is used to reconstruct the kinematic variables.
The PT method achieves both superior resolution and stability in x and Q2 in the full kine-
matic range covered, in comparison with reconstruction methods used in our previous structure
function measurements.

5.1 Characteristics of standard reconstruction methods

As discussed in Sect. 4, the positron variables, E ′
e and θe are measured with high precision, and

the systematic uncertainties are small. The kinematic variables calculated from these quantities
are given by:

ye = 1 −
E ′

e

2Ee

(1 − cos θe), (7)

Q2
e = 2EeE

′

e(1 + cos θe). (8)
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Measurement of F2 proton
The measurement of F2 is given by the double differential e-p cross section 
as function of x and Q2:
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Measured kinematic range
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Figure 7: a)The distribution of the events in the (x ,Q2) plane. b) The (x ,Q2)-bins used in the
structure function determination. Also indicated are lines of constant y and of constant γ

H
.

The γ
H

values for this figure are calculated directly from x and Q2.
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F2 results from HERA
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Parton distributions from HERA
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Figure 18: The parton distribution functions from HERAPDF1.0, xuv, xdv, xS = 2x(Ū+ D̄), xg,
at Q2 = 1.9 GeV2 (top) and Q2 = 10 GeV2 (bottom). The gluon and sea distributions are scaled
down by a factor 20. The experimental, model and parametrisation uncertainties are shown
separately.
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down by a factor 20. The experimental, model and parametrisation uncertainties are shown
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