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Exercise 4.1 Shor code and arbitrary single qubit errors

a.) Let E be parametrized as

E =

(
E11 E12

E21 E22

)
.

By defining the complex numbers e1, e2, e3, e4 as

e1 := (E11 + E22)/2

e2 := (E12 + E21)/2

e3 := (E11 − E22)/2

e4 := (E21 − E12)/2

yields E = e1 · I + e2 ·X + e3 · Z + e4 ·X · Z.

b.) According to the previous item we can write the operator Ei
j as

Ei
j = ei1 · Ij + ei2 ·Xj + ei3 · Zj + ei4 ·Xj · Zj . (1)

As the noise processNj is a trace preserving CPM it must hold that
∑

i(E
i)† ·Ei = I,

which implies by straightforward calculations that∑
i

(
|ei1|2 + |ei2|2 + |ei3|2 + |ei4|2

)
= 1 . (2)

The error correction phase C : S(HC)→ S(HC) of the Shor code can be written as

C(ρ) =
∑
s

Us · Ps · ρ · P †s · U †s ,

where {Ps}s denotes a projective measurement with syndrome outcome s and Us

are unitaries which correct the errors depending on the syndrome s. We are allowed
to write C in this form as the syndrome measurements for the bit and phase flips as
well as the correction of these errors do all commute (see also Exercise 1.3). Using
Stinespring Dilation the trace preserving CPM C can be represented as an isometry
UC : HC → HC ⊗HS by

UC :=
∑
s

Us · Ps ⊗ |s〉S .

Let Ej ∈ {Ij, Xj, Zj, Xj · Zj} act on the j’th qubit. Then, because the Shor co-
de protects against the errors X, Z and X · Z on a single qubit it follows that
C(Ej|ψ〉〈ψ|E†j ) = |ψ〉〈ψ|, and therefore

UCEj|ψ〉 = |ψ〉 ⊗ |s(Ej)〉S , (3)

1



where s(Ej) denotes the syndrome depending on the error Ej. Let us introduce the
following notation Ei

j,1 := Ij, Ei
j,2 := Xj, E

i
j,3 := Zj and Ei

j,4 := Xj · Zj. Then note
that

〈s(Ei
j,k)|s(Ei

j,l)〉 = δk,l , (4)

as perfect error correction is possible for the errors X, Z and X · Z, i.e., we get
different syndromes for different errors.

The noise process Nj followed by the error correction C can then be written as

C(Nj(|ψ〉〈ψ|)) =
∑
i

∑
k,l∈{1,2,3,4}

eik · (eil)∗ · C(Ei
j,k|ψ〉〈ψ|(Ei

j,l)
†)

=
∑
i

∑
k,l

eik · (eil)∗ · trS(UCE
i
j,k|ψ〉〈ψ|(Ei

j,l)
†U †C)

=
∑
i

∑
k,l

eik · (eil)∗ · |ψ〉〈ψ| · 〈s(Ei
j,l)|s(Ei

j,k)〉S

=
∑
i

∑
k

|eik|2 · |ψ〉〈ψ|

= |ψ〉〈ψ| ,

where we used the linearity of C in the first line, (3) in the third line, (4) in the
fourth line, (2) in the fifth line and that Nj(|ψ〉〈ψ|) =

∑
iE

i
j|ψ〉〈ψ|(Ei

j)
† with Ei

j =
ei1 · Ei

j,1 + ei2 · Ei
j,2 + ei3 · Ei

j,3 + ei4 · Ei
j,4 (see also (1)). Hence, the error correction

operation C of the Shor code can correct errors introduced by arbitrary single qubit
CPMs Nj.

Exercise 4.2 Error analysis and concatenation of codes

a.) Proving that
I
2

=
ρ+XρX + Y ρY + ZρZ

4
,

immediately implies the statement. So lets do that. Any two-by-two density matrix
ρ can be written as

ρ = p|0〉〈0|+ (1− p)|1〉〈1|+ c|0〉〈1|+ c∗|1〉〈0| ,

for some real number 0 ≤ p ≤ 1 and some complex number c. We then have

XρX = p|1〉〈1|+ (1− p)|0〉〈0|+ c|1〉〈0|+ c∗|0〉〈1|
Y ρY = p|1〉〈1|+ (1− p)|0〉〈0| − c|1〉〈0| − c∗|0〉〈1|
ZρZ = p|0〉〈0|+ (1− p)|1〉〈1| − c|0〉〈1| − c∗|1〉〈0| ,

which implies that ρ+XρX + Y ρY + ZρZ = 2 · I.

b.) Let us first compute a lower bound on the probability that an error occurs which can
be corrected. Of course, if no error occurs we are fine. This happens with probability

(1− p)9 ,
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as the noise is acting independently on each qubit. A single X, Z or Y flip can also
be corrected by the Shor code. This happens with probability

9 · p
3

(1− p)8 + 9 · p
3

(1− p)8 + 9 · p
3

(1− p)8 .

Exactly two bit flips can be corrected in 27 (the bit flips have to be in different
blocks) out of the total 36 = (9 · 8)/2 cases. Hence, the probability that these errors
can be corrected is

27 ·
(p

3

)2
(1− p)7 .

Exactly two phase flips can be corrected in only 9 (the phase flips have to be in the
same block) out of the total 36 cases. Hence, the probability that these errors can
be corrected is

9 ·
(p

3

)2
(1− p)7 .

Exactly two Y flips cannot be corrected by the Shor code. Note that even if there
are more than two errors it is still possible that the Shor code protects against these
errors. By adding up the above probabilities gives us therefore a lower bound. Hence,
the probability that the error can be corrected is larger than

(1− p)9 + 9 · p · (1− p)8 + 4 · p2 · (1− p)7 ≈ 1− 32 · p2 ,

where we neglected higher order terms, and therefore the probability that an error
occurs which cannot be corrected is

. 32 · p2 .

c.) Note first that we cannot use the analysis we did in the previous item to solve
this one. The reason is that although we have the error process N at the first
concatenation level this does not imply that this same error process is acting on the
second concatenation level as well (where each of the nine qubits in the Shor code
is represented itself by nine qubits of the Shor code, i.e., there is a total of 81 qubits
at the second level). At each concatenation level we have a different error process
N i acting on the (logical) qubits given by

N i(ρ) := (1− pi) · ρ+ pi · Ñ i(ρ) ,

with N 1(ρ) := N (ρ) = (1 − p)ρ + p/3(XρX + Y ρY + ZρZ). Note, however, that
the error process is still acting independently on the (logical) qubits and therefore
the overall noise process at the i’th concatenation level is described by (N i)⊗9.

The goal is now to determine a lower bound on the probability that an error occurred
which can be corrected at the i’th concatenation level where the noise process (N i)⊗9

is acting on the nine logical qubits. First, the probability that no error occurs is

(1− pi)9 .

We know that the Shor code can correct arbitrary single qubit errors. Hence, the
probability that exactly a single error occurs, which can then be corrected, is

9 · (1− pi)8 · pi .
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Therefore, the probability that the error can be corrected is larger than

(1− pi)9 + 9 · (1− pi)8 · pi ≈ 1− 36 · p2i ,

where we neglected higher order terms in the calculations, and hence, the error
probability is given by

pi+1 . 36 · p2i .

Solving this recursive formula yields for the error probability, given n concatenation
levels, the following upper bound

pn ≤
1

36
· (36 · p)2n .

If we set p < 1/36 this expression goes to zero by increasing the number of conca-
tenation levels n.
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