
Chapter 2

Quantum mechanics in one hour

2.1 Introduction

The purpose of this chapter is to refresh your knowledge of quantum mechanics and
to establish notation. Depending on your background you might not be familiar with
all the material presented here. If that is the case, please ask the lecturers and we
will expand the introduction. Those students who are familiar with advanced quantum
mechanics are asked to glance over some omissions.

2.2 Basis of quantum mechanics

2.2.1 Wave functions and Hilbert spaces

Quantum mechanics is nothing but simple linear algebra, albeit in huge Hilbert spaces,
which makes the problem hard. The foundations are pretty simple though.

A pure state of a quantum system is described by a “wave function” |Ψ〉, which is
an element of a Hilbert space H:

|Ψ〉 ∈ H (2.1)

Usually the wave functions are normalized:

|| |Ψ〉 || =
√

〈Ψ|Ψ〉 = 1. (2.2)

Here the “bra-ket” notation

〈Φ|Ψ〉 (2.3)

denotes the scalar product of the two wave functions |Φ〉 and |Ψ〉.
The simplest example is the spin-1/2 system, describing e.g. the two spin states

of an electron. Classically the spin ~S of the electron (which can be visualized as an
internal angular momentum), can point in any direction. In quantum mechanics it is
described by a two-dimensional complex Hilbert space H = C2. A common choice of
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basis vectors are the “up” and “down” spin states

| ↑〉 =

(

1
0

)

(2.4)

| ↓〉 =

(

0
1

)

(2.5)

This is similar to the classical Ising model, but in contrast to a classical Ising spin
that can point only either up or down, the quantum spin can exist in any complex
superposition

|Ψ〉 = α| ↑〉+ β| ↓〉 (2.6)

of the basis states, where the normalization condition (2.2) requires that |α|2+ |β|2 = 1.
For example, as we will see below the state

| →〉 = 1√
2
(| ↑〉+ | ↓〉) (2.7)

is a superposition that describes the spin pointing in the positive x-direction.

2.2.2 Mixed states and density matrices

Unless specifically prepared in a pure state in an experiment, quantum systems in
Nature rarely exist as pure states but instead as probabilistic superpositions. The most
general state of a quantum system is then described as a density matrix ρ, with unit
trace

Trρ = 1. (2.8)

The density matrix of a pure state is just the projector onto that state

ρpure = |Ψ〉〈Ψ|. (2.9)

For example, the density matrix of a spin pointing in the positive x-direction is

ρ→ = | →〉〈→ | =
(

1/2 1/2
1/2 1/2

)

. (2.10)

Instead of being in a coherent superposition of up and down, the system could also
be in a probabilistic mixed state, with a 50% probability of pointing up and a 50%
probability of pointing down, which would be described by the density matrix

ρmixed =

(

1/2 0
0 1/2

)

. (2.11)

2.2.3 Observables

Any physical observable is represented by a self-adjoint linear operator acting on the
Hilbert space, which in a final dimensional Hilbert space can be represented by a Hermi-
tian matrix. For our spin-1/2 system, using the basis introduced above, the components
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Sx, Sy and Sz of the spin in the x-, y-, and z-directions are represented by the Pauli
matrices

Sx =
~

2
σx =

~

2

(

0 1
1 0

)

(2.12)

Sy =
~

2
σy =

~

2

(

0 −i
i 0

)

(2.13)

Sz =
~

2
σz =

~

2

(

1 0
0 −1

)

(2.14)

The spin component along an arbitrary unit vector ê is the linear superposition of
the components, i.e.

ê · ~S = exSx + eySy + ezSz =
~

2

(

ez ex − iey
ex + iey −ez

)

(2.15)

The fact that these observables do not commute but instead satisfy the non-trivial
commutation relations

[Sx, Sy] = SxSy − SySx = i~Sz, (2.16)

[Sy, Sz] = i~Sx, (2.17)

[Sz, Sx] = i~Sy, (2.18)

is the root of the differences between classical and quantum mechanics .

2.2.4 The measurement process

The outcome of a measurement in a quantum system is usually intrusive and not deter-
ministic. After measuring an observable A, the new wave function of the system will be
an eigenvector of A and the outcome of the measurement the corresponding eigenvalue.
The state of the system is thus changed by the measurement process!

For example, if we start with a spin pointing up with wave function

|Ψ〉 = | ↑〉 =
(

1
0

)

(2.19)

or alternatively density matrix

ρ↑ =

(

1 0
0 0

)

(2.20)

and we measure the x-component of the spin Sx, the resulting measurement will be
either +~/2 or −~/2, depending on whether the spin after the measurement points in
the + or − x-direction, and the wave function after the measurement will be either of

| →〉 =
1√
2
(| ↑〉+ | ↓〉) =

(

1/
√
2

1/
√
2

)

(2.21)

| ←〉 =
1√
2
(| ↑〉 − | ↓〉) =

(

1/
√
2

−1/
√
2

)

(2.22)
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Either of these states will be picked with a probability given by the overlap of the initial
wave function by the individual eigenstates:

p→ = ||〈→ |Ψ〉||2 = 1/2 (2.23)

p← = ||〈← |Ψ〉||2 = 1/2 (2.24)

The final state is a probabilistic superposition of these two outcomes, described by the
density matrix

ρ = p→| →〉〈→ |+ p←| ←〉〈← | =
(

1/2 0
0 1/2

)

. (2.25)

which differs from the initial density matrix ρ↑.
If we are not interested in the result of a particular outcome, but just in the average,

the expectation value of the measurement can easily be calculated from a wave function
|Ψ〉 as

〈A〉 = 〈Ψ|A|Ψ〉 (2.26)

or from a density matrix ρ as
〈A〉 = Tr(ρA). (2.27)

For pure states with density matrix ρΨ = |Ψ〉〈Ψ| the two formulations are identical:

Tr(ρ0A) = Tr(|Ψ〉〈Ψ|A) = 〈Ψ|A|Ψ〉. (2.28)

2.2.5 The uncertainty relation

If two observables A and B do not commute [A,B] 6= 0, they cannot be measured
simultaneously. If A is measured first, the wave function is changed to an eigenstate of
A, which changes the result of a subsequent measurement of B. As a consequence the
values of A and B in a state Ψ cannot be simultaneously known, which is quantified by
the famous Heisenberg uncertainty relation which states that if two observables A and
B do not commute but satisfy

[A,B] = i~ (2.29)

then the product of the root-mean-square deviations ∆A and ∆B of simultaneous mea-
surements of A and B has to be larger than

∆A∆B ≥ ~/2 (2.30)

For more details about the uncertainty relation, the measurement process or the inter-
pretation of quantum mechanics we refer interested students to an advanced quantum
mechanics class or text book.

2.2.6 The Schrödinger equation

The time-dependent Schrödinger equation

After so much introduction the Schrödinger equation is very easy to present. The wave
function |Ψ〉 of a quantum system evolves according to

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉, (2.31)

where H is the Hamilton operator. This is just a first order linear differential equation.
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The time-independent Schrödinger equation

For a stationary time-independent problem the Schrödinger equation can be simplified.
Using the ansatz

|Ψ(t)〉 = exp(−iEt/~)|Ψ〉, (2.32)

where E is the energy of the system, the Schrödinger equation simplifies to a linear
eigenvalue problem

H|Ψ〉 = E|Ψ〉. (2.33)

The rest of the semester will be spent solving just this simple eigenvalue problem!

The Schrödinger equation for the density matrix

The time evolution of a density matrix ρ(t) can be derived from the time evolution of
pure states, and can be written as

i~
∂

∂t
ρ(t) = [H, ρ(t)] (2.34)

The proof is left as a simple exercise.

2.2.7 The thermal density matrix

Finally we want to describe a physical system not in the ground state but in thermal
equilibrium at a given inverse temperature β = 1/kBT . In a classical system each mi-
crostate i of energy Ei is occupied with a probability given by the Boltzman distribution

pi =
1

Z
exp(−βEi), (2.35)

where the partition function

Z =
∑

i

exp(−βEi) (2.36)

normalizes the probabilities.
In a quantum system, if we use a basis of eigenstates |i〉 with energy Ei, the density

matrix can be written analogously as

ρβ =
1

Z

∑

i

exp(−βEi)|i〉〈i| (2.37)

For a general basis, which is not necessarily an eigenbasis of the Hamiltonian H , the
density matrix can be obtained by diagonalizing the Hamiltonian, using above equation,
and transforming back to the original basis. The resulting density matrix is

ρβ =
1

Z
exp(−βH) (2.38)

where the partition function now is

Z = Tr exp(−βH) (2.39)
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Calculating the thermal average of an observable A in a quantum system is hence
formally very easy:

〈A〉 = Tr(Aρβ) =
TrA exp(−βH)

Tr exp(−βH)
, (2.40)

but actually evaluating this expression is a hard problem.

2.3 The spin-S problem

Before discussing solutions of the Schrödinger equation we will review two very simple
systems: a localized particle with general spin S and a free quantum particle.

In section 2.2.1 we have already seen the Hilbert space and the spin operators for the
most common case of a spin-1/2 particle. The algebra of the spin operators given by the
commutation relations (2.12)-(2.12) allows not only the two-dimensional representation
shown there, but a series of 2S + 1-dimensional representations in the Hilbert space
C

2S+1 for all integer and half-integer values S = 0, 1
2
, 1, 3

2
, 2, . . .. The basis states {|s〉}

are usually chosen as eigenstates of the Sz operator

Sz|s〉 = ~s|s〉, (2.41)

where s can take any value in the range −S,−S +1,−S +2, . . . , S− 1, S. In this basis
the Sz operator is diagonal, and the Sx and Sy operators can be constructed from the
“ladder operators”

S+|s〉 =
√

S(S + 1)− s(s+ 1)|s+ 1〉 (2.42)

S−|s〉 =
√

S(S + 1)− s(s− 1)|s− 1〉 (2.43)

which increment or decrement the Sz value by 1 through

Sx =
1

2

(

S+ + S−
)

(2.44)

Sy =
1

2i

(

S+ − S−
)

. (2.45)

The Hamiltonian of the spin coupled to a magnetic field ~h is

H = −gµB
~h · ~S, (2.46)

which introduces nontrivial dynamics since the components of ~S do not commute. As
a consequence the spin precesses around the magnetic field direction.

Exercise: Derive the differential equation governing the rotation of a spin starting
along the +x-direction rotating under a field in the +z-direction

2.4 A quantum particle in free space

Our second example is a single quantum particle in an n-dimensional free space. Its
Hilbert space is given by all twice-continuously differentiable complex functions over
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the real space Rn. The wave functions |Ψ〉 are complex-valued functions Ψ(~x) in n-
dimensional space. In this representation the operator x̂, measuring the position of the
particle is simple and diagonal

x̂ = ~x, (2.47)

while the momentum operator p̂ becomes a differential operator

p̂ = −i~∇. (2.48)

These two operators do not commute but their commutator is

[x̂, p̂] = i~. (2.49)

The Schrödinger equation of a quantum particle in an external potential V (~x) can be
obtained from the classical Hamilton function by replacing the momentum and position
variables by the operators above. Instead of the classical Hamilton function

H(~x, ~p) =
~p2

2m
+ V (~x) (2.50)

we use the quantum mechanical Hamiltonian operator

H =
p̂2

2m
+ V (x̂) = − ~2

2m
∇2 + V (~x), (2.51)

which gives the famous form

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (~x)ψ (2.52)

of the one-body Schrödinger equation.

2.4.1 The harmonic oscillator

As a special exactly solvable case let us consider the one-dimensional quantum harmonic
oscillator with massm and potential K

2
x2. Defining momentum p̂ and position operators

q̂ in units where m = ~ = K = 1, the time-independent Schrödinger equation is given
by

H|n〉 = 1

2
(p̂2 + q̂2)|n〉 = En|n〉 (2.53)

Inserting the definition of p̂ we obtain an eigenvalue problem of an ordinary differential
equation

−1
2
φ′′n(q) +

1

2
q2φn(q) = Enφn(q) (2.54)

whose eigenvalues En = (n+ 1/2) and eigenfunctions

φn(q) =
1

√

2nn!
√
π
exp

(

−1
2
q2
)

Hn(q), (2.55)

are known analytically. Here the Hn are the Hermite polynomials and n = 0, 1, . . ..
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Using these eigenstates as a basis sets we need to find the representation of q̂ and
p̂. Performing the integrals

〈m|q̂|n〉 and 〈m|p̂|n〉 (2.56)

it turns out that they are nonzero only for m = n± 1 and they can be written in terms
of “ladder operators” a and a†:

q̂ =
1√
2
(a† + a) (2.57)

p̂ =
1

i
√
2
(a† − a) (2.58)

(2.59)

where the raising and lowering operators a† and a only have the following nonzero
matrix elements:

〈n+ 1|a†|n〉 = 〈n|a|n+ 1〉 =
√
n + 1. (2.60)

and commutation relations

[a, a] = [a†, a†] = 0 (2.61)

[a, a†] = 1. (2.62)

It will also be useful to introduce the number operator n̂ = a†a which is diagonal with
eigenvalue n: elements

n̂|n〉 = a†a|n〉 = √na†|n− 1〉 = n||n〉. (2.63)

To check this representation let us plug the definitions back into the Hamiltonian to
obtain

H =
1

2
(p̂2 + q̂2)

=
1

4

[

−(a† − a)2 + (a† + a)2
]

=
1

2
(a†a+ aa†)

=
1

2
(2a†a+ 1) = n̂+

1

2
, (2.64)

which has the correct spectrum. In deriving the last lines we have used the commutation
relation (2.62).
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