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Chapter 1

The Set of Density Operators

Philipp Kammerlander
supervisor: Dr. Mário Ziman

The main question treated in the talk is the following: What

is the most general state a quantum system can have?

The answer to this question is given by density operators. In this

sense density operators generalize the concept of wave functions.

In a first part we will follow two different approaches leading to

the same mathematical concept of density operators. After giv-

ing the formal definition of the set of density operators we will

investigate the spectral properties. Further we focus on general

structural properties of the set and identify extremal states. We

will introduce a measure of mixedness and talk about the non-

uniqueness of spectral decompositions into pure states. Finally,

we introduce the Bloch representation and investigate the geom-

etry of the set as well as its boundary.

1.1 Introduction

We will take two conceptually different paths.

1.1.1 Mixing of Preparation Procedures

The concept of a state can be understood as an ensemble of similarly prepared

systems. In the following we will denote states by ρ and the set of states by S 3 ρ.

To determine a system’s state one can perform measurements on the system. A

statistical theory, such as quantum theory, does not predict the outcomes of the
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1.1 Introduction

measurements but their probabilities. From the axioms of quantum mechanics

we know that in the Hilbert space formalism measurements are described by ob-

servables, which are self-adjoint operators on our Hilbert space H. The outcomes

are eigenvalues of this specific operator. If our system is in the state |ψ〉 we can

calculate the probability to get the outcome q by

Pr (q, |ψ〉) = 〈ψ|Q|ψ〉 ≡ tr (Q|ψ〉〈ψ|) , (1.1)

where Q is the projection onto the eigenspace Eig(q).

What if we cannot assign one particular state |ψ〉 to our quantum system but

for example two? This can be achieved through a preparation procedure that

chooses randomly between two different states |ψ1〉 and |ψ2〉 with probability λ

and (1 − λ), respectively. In general we call such a configuration a statistical

ensemble of quantum states and denote it by {|ψi〉, pi} where the pi are the

probabilities to find the system in the state |ψi〉. Of course the probabilities must

fulfil
∑

i pi = 1.

Example 1.1.1. It is important that one does not confuse a superposition with

an ensemble of states. For instance, the following two expressions, written in

different notations, do not describe the same state:

1√
2

(| ↑〉+ | ↓〉) 6=
{
| ↑〉, 1

2
; | ↓〉, 1

2

}
(1.2)

Suppose now that we perform the same measurement on the ensemble of states

{|ψ1〉, λ; |ψ2〉, 1− λ}. To be able to calculate the probabilities of the possible

outcomes we have to make a basic assumption.

Assumption. For an ensemble of states the following equation must hold:

Pr (q, {|ψ1〉, λ; |ψ2〉, 1− λ}) = λPr (q, |ψ1〉) + (1− λ)Pr (q, |ψ2〉) (1.3)

The basic assumption is nothing less than the demand for consistency. It is

only natural that we expect the probability for the occurrence of an event given

an ensemble of states equals to the sum of probabilities for each state weighted

with the probability to find the system in a particular state. Making a few

manipulations on the assumption tells us that we can interpret an ensemble of

states as a new state.

Pr (q, {|ψ1〉, λ; |ψ2〉, 1− λ})
Ass.
= λPr (q, |ψ1〉) + (1− λ)Pr (q, |ψ2〉) (1.4)

= λtr (Q|ψ1〉〈ψ1|) + (1− λ)tr (Q|ψ2〉〈ψ2|)
= tr (Q [λ|ψ1〉〈ψ1|+ (1− λ)|ψ2〉〈ψ2|])

2



The Set of Density Operators [Philipp Kammerlander]

If we interpret a state given by a wave function |ψ〉 as the projector |ψ〉〈ψ| we find

that an ensemble of states is simply the convex combination of these projectors.

This is an extended concept of state as states are now represented by Hilbert

space operators. The question is: By which operators?

Suggestion: Density operators.

Definition 1.1.1. A density operator ρ on a Hilbert space H is a normalized,

positive operator on H, i.e. ρ ≥ 0 and tr(ρ) = 1.

The set of density operators is denoted by S (H).

In other words density operators are trace class operators1 which are positive and

of unit trace. This will allow us to use the spectral theorem later on.

Remark. Positivity of a linear operator ρ means: ∀φ ∈ H : 〈φ|ρ|φ〉 ≥ 0.

The following general definitions help to understand an important property of

density operators.

Definition 1.1.2. Let V be a vector space, M ⊂ V . M is a convex subset if

∀v, w ∈M, 0 ≤ λ ≤ 1 : λv + (1− λ)w ∈M. (1.5)

Definition 1.1.3. A convex combination of vectors vi ∈ V , where V is a

vector space, is a linear combination∑
i

aivi with 0 ≤ ai ≤ 1 and
∑
i

ai = 1. (1.6)

Remark. By construction S (H) is convex. One could say that mixing introduces

the convex structure.

Proof. To see this we need to show that convex combinations of density operators

are again density operators. W.l.o.g. we show it only for the convex combination

of two density operators.

Let ρ1, ρ2 ∈ S (H), λ ∈ [0, 1] and φ ∈ H. Consider ρ = λρ1 + (1− λ)ρ2. Then:

〈φ|ρ|φ〉 = λ︸︷︷︸
≥0

〈φ|ρ1|φ〉︸ ︷︷ ︸
≥0

+ (1− λ)︸ ︷︷ ︸
≥0

〈φ|ρ2|φ〉︸ ︷︷ ︸
≥0

≥ 0 (1.7)

and

tr(ρ) = λ tr(ρ1)︸ ︷︷ ︸
=1

+(1− λ) tr(ρ2)︸ ︷︷ ︸
=1

(1.8)

= λ+ 1− λ = 1.

So the convex combination of normalized and positive operators is normalized

and positive. This is what we wanted to show.

1Operators for which the trace is well-defined.
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1.1 Introduction

Remark. For a finite dimensional system positivity implies hermiticity.

Proof.

ρ ≥ 0⇒ 〈φ|ρ|φ〉 ∈ R≥0∀φ ∈ H (1.9)

⇒ 〈ρφ|φ〉 = 〈φ|ρφ〉∗ ∈R= 〈φ|ρφ〉 (1.10)

⇒ ρ† = ρ (1.11)

In retrospective, (1.4) can be seen as the defining property of density operators.

1.1.2 Ignoring a System’s Environment

The second approach to density operators arises due to the need to describe a

system interacting with its environment. To illustrate this we make an example.

Example 1.1.2. Suppose we are given two qubits, one in room A and one in

room B. We have only access to room A, meaning that we can only perform

measurements on the qubit in room A. The qubits shall be in the state

|ψAB〉 = a|0〉 ⊗ |0〉+ b|1〉 ⊗ |1〉, (1.12)

where a and b must fulfil |a|2 + |b|2 = 1. It is immediately clear that the qubits

are correlated, meaning that the outcomes of measurements in room A and room

B are not independent.

We are now looking for a compact way to characterize the observations that can

be made in room A without having access to room B. In order to do this we have

to know how to formulate a measurement made in room A only. One can show

that it must be expressed by MA ⊗ 1 where MA is a self-adjoint operator acting

on A. Therefore we find

〈MA〉 = 〈ψAB|MA ⊗ 1|ψAB〉 ≡ tr ((MA ⊗ 1) |ψAB〉〈ψAB|) , (1.13)

i.e.

ρAB = |ψAB〉〈ψAB|. (1.14)

We would like to write 〈MA〉 = tr (MAρA) so we need a function that gives us ρA
from ρAB. More generally: Assuming that ρAB =

∑
j Aj ⊗Bj,

4



The Set of Density Operators [Philipp Kammerlander]

〈MA〉 = tr

(∑
j

(MA ⊗ 1) (Aj ⊗Bj)

)
=
∑
j

tr (MAAj) tr (Bj) = tr (MAρA) ,

(1.15)

where ρA =
∑

j tr (Bj)Aj = trB (ρAB) is a partial trace as defined in

Definition 1.1.4. The partial trace over system B of an operator S ⊗ T

acting on a Hilbert space HA ⊗HB is an operator acting on HA given by

trB (S ⊗ T ) := tr(T )S and linear. (1.16)

ρA := trB (ρAB) is called the reduced density operator.

One can show that the partial trace is the unique function that fulfils

tr ((MA ⊗ 1) ρAB) = tr (MAtrB (ρAB)) (1.17)

for all measurements that can be made on subsystem A.

Example 1.1.3. As before, let our two-qubit world be in the state

|ψAB〉 = a|0〉 ⊗ |0〉+ b|1〉 ⊗ |1〉. We find

ρAB = |ψAB〉〈ψAB| =|a|2 · |0〉〈0| ⊗ |0〉〈0|+ ab∗ · |0〉〈1| ⊗ |0〉〈1| (1.18)

+ a∗b · |1〉〈0| ⊗ |1〉〈0|+ |b|2 · |1〉〈1| ⊗ |1〉〈1|
⇒ ρA = trB (ρAB) =|a|2 · |0〉〈0|+ 0 + 0 + |b|2 · |1〉〈1| (1.19)

=|a|2 · |0〉〈0|+ |b|2 · |1〉〈1|,

where we used tr (|φ1〉〈φ2|) = 〈φ1|φ2〉.

Remark. ρA can be interpreted as an ensemble {|0〉, |a|2; |1〉, |b|2}. But one has

to pay attention: This is not the only ensemble that leads to the state ρA as we

will see soon.

So far we have seen that density operators give us the possibility to include

missing knowledge in the state of a system. From now on we are able to describe

a system A correlated with another system B only by results gotten from system

A.

5



1.2 Spectral Properties

1.2 Spectral Properties

As mentioned, positive operators are hermitian. By using the spectral decomposi-

tion theorem we can make a canonical convex decomposition for every ρ ∈ S (H):

ρ =
∑
i

piPi, (1.20)

where 0 ≤ pi ≤ 1 ,
∑

i pi = 1 and the Pi are one-dimensional orthogonal projec-

tions.

In general this decomposition is not unique. It is called canonical because the

projectors must be orthogonal. The spectral properties will become important

for proofs of propositions later on.

1.3 Structural Properties of the Set

For convex sets one can define extremal points.

Definition 1.3.1. ρ ∈ S (H) is extremal if ρ = λρ1 + (1− λ)ρ2 with 0 < λ < 1

implies ρ1 = ρ2 = ρ i.e. if the only convex decomposition is trivial.

Extremal states are called pure, non-extremal states are called mixed.

The following proposition helps to find out what pure, i.e. extremal, states are.

Proposition 1.1. The following are equivalent:

(i) ρ is pure,

(ii) ρ is a one-dimensional projection,

(iii) tr (ρ2) = 1.

Proof. We will show (i) ⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii): For ρ pure the only convex decomposition is

ρ = p1P1. (1.21)

Since tr (ρ) = 1 and tr (P ) = 1 ∀ projections P , it must be p1 = 1.

(ii)⇒(iii): Every projection fulfils P 2 = P . If ρ = P we find

tr
(
ρ2
)

= tr (ρ) = 1. (1.22)

6



The Set of Density Operators [Philipp Kammerlander]

(iii)⇒(i): We can always write ρ =
∑

i piPi. This yields

1
!

=tr
(
ρ2
)

= tr

(∑
i,j

pipjPiPj

)
=
∑
i

p2
i · tr(Pi) =

∑
i

p2
i . (1.23)

We made use of the fact that the Pi are orthogonal projections. Since

0 ≤ pi ≤ 1 it follows: pi = δij for some j. Per construction this is the only

convex decomposition [1].

Remark. We used the spectral decomposition theorem to prove the proposition.

Notice that this is not necessary.

The next step is to find an easily applicable instrument to decide whether a given

state is pure or not. The proposition above already gives us

Definition 1.3.2. Given a state ρ ∈ S (H) the purity of ρ is

P (ρ) := tr
(
ρ2
)
. (1.24)

Not only can we now decide whether we are dealing with a pure state, but we

also have a measure for mixedness. The following proposition lists two important

properties of the purity which will be used afterwards to make statements about

the boundary of the state space.

Proposition 1.2. Important properties of P are:

(i) P is a convex map, i.e. P (λρ1 + (1− λ)ρ2) ≤ λP (ρ1) + (1− λ)P (ρ2) .

(ii) If dim (H) = d then for all states ρ ∈ S (H): 1
d
≤ P (ρ) ≤ 1.

Remark. The proof of this proposition is technical and not too difficult. We

leave it to the reader. It can be found in [1].

With this we are now able to harvest the fruits of our labour. It is easy to see

that in the finite dimensional case P
(
1

d

)
= tr

(
1

2

d2

)
= d

d2 = 1
d
. So we found

a maximally mixed state with 1

d
. But a minimum of a convex function on a

convex set is automatically a global minimum. Therefore we conclude that 1

d
is

the unique maximally mixed state.

Remark. One can also see this easily by using Lagrange multipliers to find the

minimum of P .

7



1.4 Decomposition into Pure States

We now know the unique minimum of P . But what about the maximum? From

the proposition we know that P is always less than or equal to 1. We also know

that pure states have purity equal to 1. We conclude that the maximum of P is

1. And since the state space is convex, as well as the function P , the maximum,

i.e. the pure states, must lie on the boundary of S (H). But in general the pure

states are not the only states lying on the boundary.

To talk about the boundary properly we need to have a measure of distance. In

this case we take the trace distance.

Definition 1.3.3. The trace norm of an operator ρ is defined as

‖ρ‖tr := tr|ρ|. (1.25)

The trace distance between two operators ρ and σ is then

δ(ρ, σ) :=
1

2
‖ρ− σ‖tr. (1.26)

Remark. Of course these definitions are only valid if the expressions (1.25) and

(1.26) exist. This is the case for trace class operators.

Definition 1.3.4. We say that a state ρ belongs to the boundary of S (H) if

for each ε > 0, there exists an operator ξε ∈ Ts (H) such that δ (ρ, ξε) < ε but

ξε /∈ S (H). Here, Ts (H) is the space of all hermitian operators on H.

Proposition 1.3. If a state ρ ∈ S (H) has 0 as an eigenvalue it belongs to the

boundary.

Proof. Let ρ ∈ S (H) be a state with eigenvalue 0 and let ϕ ∈ H be a correspond-

ing normalized eigenvector. Fix ε > 0.

The operator ξε := ρ− ε|ϕ〉〈ϕ| is trace class and self adjoint, but not positive, as

〈ϕ|ξεϕ〉 = −ε < 0. On the other hand,

δ(ξε, ρ) =
1

2
ε‖|ϕ〉〈ϕ|‖tr =

1

2
ε < ε. (1.27)

It follows that ρ belongs to the boundary [1].

1.4 Decomposition into Pure States

We emphasized before that decompositions of density operators are not unique.

To illustrate this we make an Example [2].
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Example 1.4.1. Consider the state

ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1|. (1.28)

One possible interpretation of this is the ensemble of states
{
|0〉, 3

4
; |1〉, 1

4

}
.

Define then

|a〉 =

√
3

4
|0〉+

√
1

4
|1〉 and |b〉 =

√
3

4
|0〉 −

√
1

4
|1〉. (1.29)

Computing yields

1

2
|a〉〈a|+ 1

2
|b〉〈b| = ρ. (1.30)

So we could also think of this state as the ensemble
{
|a〉, 1

2
; |b〉, 1

2

}
.

Two different ensembles can give the same quantum state, meaning that the

decomposition into pure states is not unique. To decide whether two ensembles

of states give the same density operator we can use

Theorem 1.4. Two ensembles {|ψi〉, pi} and {|φj〉, qj} represent the same state

ρ =
∑
i

pi|ψi〉〈ψi| =
∑
j

qj|φj〉〈φj| (1.31)

if and only if

√
pi|ψi〉 =

∑
j

uij
√
qj|φj〉 where U = (uij) is unitary. (1.32)

Remark. If the two sets do not have the same length (w.l.o.g. 1 ≤ i ≤ n,

1 ≤ j ≤ m and m < n) we fill the list {|φj〉, qj} with vectors |φk〉 = 0 for

m < k ≤ n in order to get a n× n matrix for U .

Proof. The proof is very technical. It can be found for example in [2].

1.5 Bloch Representation

For finite dimensional systems S (H) can be represented in a very neat way. As

we mentioned earlier, in the finite dimensional case our sate space is a subset of

the space of all hermitian operators on H: S (H) ⊂ Ts (H). We introduce the

Hilbert-Schmidt scalar product

〈A|B〉 := 〈A|B〉H−S = tr(A∗B) (1.33)
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1.5 Bloch Representation

on Ts (H). Note that Ts (H) is a real vector space2.

We first have a look at the illustrative two dimensional case.

Example 1.5.1. An operator ω ∈ Ts (C2) can always be written as

ω =

(
a c+ id

c− id b

)
where a, b, c, d ∈ R. (1.34)

We conclude that the dimension of Ts (C2) is dimR (Ts (C2)) = 22 = 4. If ω is

normalized we can write:

ω =
1

2

(
(1 + z) (x− iy)

(x+ iy) (1− z)

)
=

1

2

[
1+ x

(
0 1

1 0

)
+ y

(
0 −i
i 0

)
+ z

(
1 0

0 −1

)]
=

1

2
[1+]

test ~tσ

ρ ≥ 0⇔ ‖~r‖ ≤ 1. (1.35)

In two dimensions the state space can be represented by the 1-ball in R3 which

is called the Bloch Sphere. From the results above we conclude that only pure

states are on the boundary because if ‖~r‖ = 1 then one eigenvalue of ρ is one and

the other is zero (Proposition 1.3).

The generalization of this result for Hilbert spaces of dimension d > 2 is still very

helpful but not as easy to perform as in the two-dimensional case. First we have

to ask ourselves: What is the reason for taking {σ0 := 1, σ1, σ2, σ3} as a basis?

It is known that the Pauli matrices fulfil tr (σjσk) = 2δjk. So we are dealing with

an orthogonal basis with respect to the Hilbert-Schmidt scalar product. It is easy

to show that the dimension of Ts (H) is in general dimR (Ts (H)) = d2. Suppose

we find a basis {Ej}d
2−1
j=0 such that E0 = 1 and E1, . . . Ed2−1 are orthogonal with

〈Ej|Ek〉 = dδjk. The orthogonality of the Ej yields that tr (Ej) = dδj0. Therefore

all basis vectors except the unity matrix must be traceless. Knowing this we can

give

Definition 1.5.1. Given a basis {Ej}d
2−1
j=0 with the above properties we can

represent every ρ ∈ S (H) as

ρ =
1

d

(
1+ ~r · ~E

)
, (1.36)

2A hermitian operator multiplied by i becomes anti-hermitian.
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where ~r ∈ Rd2−1 and ~E = (E1, . . . , Ed2−1). This is the general Bloch Repre-

sentation.

Remark. tr (Ej) = dδj0 and therefore trivially: tr(ρ) = 1.

Remark. As in Fourier analysis: ri = tr (ρEi) for i = 1, . . . , d2 − 1.

Now that it is clear that the normalization is already given by construction the

only remaining question is: What are the demands on ~r to make ρ positive? Un-

fortunately the answer is somewhat complicated and cannot be given in general.

A possible approach to narrow down the values ~r can obtain is using Proposition

1.2. Exploiting the properties of the basis {Ej}d
2−1
j=o we find

P(ρ) =
1

d

(
1 + ‖~r‖2

) !

≤ 1. (1.37)

This shows that the state space is contained in the
√
d− 1-ball in Rd2−1. But

does it coincide with the ball?

The answer is no. To see this we make an

Example 1.5.2. Let ρ = 1
d

(
1+ ~r · ~E

)
be a pure state, d > 2. Then ρ′ :=

1
d

(
1− ~r · ~E

)
is not in S (H).

The antipodal of a pure state is not a state anymore for d > 2.

Proof. Let ρ = |φ〉〈φ|. Then:

1 = 〈φ|ρ|φ〉 =

〈
φ

∣∣∣∣1d (1+ ~r · ~E
)∣∣∣∣φ〉 =

1

d
+

1

d

〈
φ
∣∣∣~r · ~E∣∣∣φ〉 (1.38)

i.e.
〈
φ
∣∣∣~r · ~E∣∣∣φ〉 = d− 1.

With that:

〈φ|ρ′|φ〉 =
1

d
− 1

d

〈
φ
∣∣∣~r · ~E∣∣∣φ〉 =

1

d
− 1

d
(d− 1) =

2− d
d

< 0 for d > 2. (1.39)

This means that ρ′ is not positive and therefore is no state.

Describing the geometry of the state space in general goes beyond the scope of

this report. The important point to remember is that the two-dimensional case

is exceptional in many respects.
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1.6 Conclusion

Density operators are more general implementations of quantum states than wave

functions in many respects. They allow to include missing knowledge and to fo-

cus on subsystems by tracing out the environment. The latter is done by taking

the partial trace over the environment trenv of the density operator describing

the complete system.

The set of density operators, also called the state space, is convex. This turned

out to be a helpful property to describe its structure. Defining pure states as

extremal points of the state space we found that a pure state is always a one-

dimensional projector.

Using the equivalence ρ pure ⇔ tr(ρ2) = 1, we are provided with a measure

of mixedness: P(ρ) = tr(ρ2). The unique maximally mixed state for finite di-

mensional systems was determined to be 1

d
, where d is the dimension of the

corresponding Hilbert space.

It is an important fact that mixed states have no unique decomposition into pure

states. In fact there are infinitely many possibilities to do so. Thus, the interpre-

tation of a mixed state as a statistical ensemble is left open to the person dealing

with it.

Finally the Bloch Representation was introduced. For H = C
2 the state space

can be represented as the 1-ball in R3. For higher dimensional systems this is

not true anymore. The structure gets much more complicated and cannot be

described easily in general. An illustrating example for the complexity was given

in Example 1.5.2.
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Chapter 2

Time Evolution of Density

Operators

Quintin Meier
supervisor: Màrio Ziman

This paper is treating the time evolution of density matrices for

open and isolated systems. The discussion of isolated systems

covers the properties of unitary time evolution and the derivation

of the Liouville von Neumann theorem.

In the discussion of open systems the properties of non-unitary

evolution are discussed by introducing the framework of quantum

channels and the consequences of Stinespring Dilation Theorem.

2.1 Introduction

The formalism of density operators lets us describe a quantum system more gen-

erally than with quantum states. The density operators describe a distribution

of wave functions for particles inside a system. In the first chapter, the proper-

ties of the set of density operators were discussed. In this chapter, we are going

to discuss the time evolution of density operators and the behaviour of density

operators under unitary and non-unitary transformations. The discussion of iso-

lated systems will find the Liouville- von Neumann equation which is somewhat

the analogue of Schrödingers equation for density operators. In the discussion

of open systems the mathematical properties of quantum channels will be ad-

dressed, which are defined by the following properties: a quantum channel is a

trace preserving, completely positive, linear maps between density operators. We

will further discuss the effects of such maps on a quantum system.
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2.2 Time evolution of isolated systems

2.1.1 Notation

First we will introduce some notation which will be used throughout the paper.

H are Hilbert spaces

ψ ∈ H are state vectors

S(H) is the space of quantum states on H
ρ ∈ S(H) are density operators, i.e trρ = 1, ρ ≥ 0

L(H) is the space of operators acting on H

2.2 Time evolution of isolated systems

A closed or isolated system is a system which does not interact with it surround-

ings. The behaviour of a closed system is described entirely by its Hamilton

operator H and the induced Schrödinger equation. To find the time evolution

of density operators is by starting with our knowledge of the time evolution of

state vectors according to Schrödinger Equation and we will translate it into the

density operator space S(H)

2.2.1 Time evolution of state vectors

The time evolution of state vectors is governed by the Schrödinger equation.

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 (2.1)

where |ψ(t)〉 ∈ H is a state vector and H ∈ L(H) is the Hamilton operator. Now

for later purposes we need to define the time evolution operator which describes

the transformation from the initial state |ψ(t0)〉 into the state vector |ψ(t)〉 at a

later point in time t.

Definition 2.1. The time evolution operator U(t, t0) is defined by

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (2.2)

To calculate this time evolution operator we will need the exponential function

for operators which is defined analogous to the exponential function for numbers.

Definition 2.2. The exponential function in operator space is defined as

exp[A] =
∞∑
n=0

1

n!
An (2.3)

for A ∈ L(H)
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We now calculate the time evolution operator by inserting the definition into

Schrödinger’s equation.

Proposition 2.1. In case of a time-independent Hamiltonian, U(t, t0) is given

by

U(t, t0) = exp

[
− i
~
H(t− t0)

]
(2.4)

Proof. To prove this proposition we insert the definition of U(t, t0) into Schrödinger

Equation (2.1)

i~
d

dt
U(t, t0) |ψ(t0)〉 = HU(t, t0) |ψ(t0)〉

Since this holds for all |ψ〉 ∈ H we obtain

i~
d

dt
U(t, t0) = HU(t, t0)

It is easy to see that the solution to this differential equation is given by

U(t, t0) = exp

[
− i
~
H(t− t0)

]

Since the time evolution operator is dependent on the time interval we will set t0
to 0 and t→ t− t0 and we will further use the notation Ut := U(t, 0).

The time evolution operators satisfy the properties of a 1-parametric group.

Definition 2.3. A 1-parametric group is a continuous group homomorphism

Φ : R→ G with the properties

Φ(t)Φ(s) = Φ(t+ s) ∀t, s ∈ R (2.5)

Proposition 2.2. The time evolution operators form a 1-parametric group

Proof. This is proved by putting the operators into the definition.

UsUt = exp

[
− i
~
H(s)

]
exp

[
− i
~
H(t)

]
= exp

[
− i
~
H(s+ t)

]
= Us+t (2.6)

It is easy to see that Ut = exp

[
− i
~
H(t)

]
is unitary and U0 = I is the group

identity.

Using all the properties discussed in this section, we are ready to translate the

time evolution operator into the space of density operators.
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2.2 Time evolution of isolated systems

2.2.2 Time evolution of density operators

To discuss the time evolution of density operators we start by describing the time

evolution of pure states, because the density operator of a pure state at a given

time t is defined as ρ = |ψ(t)〉 〈ψ(t)|.
We know how how the state vectors evolve in time and just applying this to the

definition we get

ρ(t) = |ψ(t)〉 〈ψ(t)| = Ut |ψ(t0)〉 〈ψ(t0)|U †t = Utρ(t0)U †t

For further use we will call this transformation σUt .

Definition 2.4. The time-evolution of the density matrix of a pure state is given

by the map σUt

σUt : S(H)→ S(H)

σUt : ρ(t0) 7→ Utρ(t0)U †t = ρ(t)

We have seen in the last section that the time evolution operator form a

1-parametric group. These group properties have are still true for density matri-

ces.

Proposition 2.3. σUt still satisfies the one-parametric group relations, thus

σUs ◦ σUt = σUt+s (2.7)

σU0 = I (2.8)

Proof. To proof this we use the properties of Ut from the proposition 2.2

σUs ◦ σUt(ρ(t0)) = UsUtρ(t0)U †t U
†
s = σUs+t(ρ(t0)

and

σU(t0,t0)(ρ(t0)) = Iρ(t0)I = ρ(t0)⇒ σU(t0,t0) = I

Density operators give a more complete description of a quantum system because

they describe not only pure states, but also mixed states. The general density

operator is defined by the formula

ρ =
∑
µ

pµ |ψµ〉 〈ψµ|

Each of the state vectors |ψµ〉 evolves according to the time evolution operator,

thus the density operator is described by
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ρ(t) =
∑
µ

pµUt |ψµ(t0)〉 〈ψµ(t0)|U †t = Ut

(∑
µ

pµ |ψµ(t0)〉 〈ψµ(t0)|

)
U †t = σUt(ρ(t0))

In the third step we assumed linearity of Ut which is obviously true for

Ut = exp

[
− i
~
Ht

]
.

Using this extension onto mixed states we observe that the mixture of states

evolves into the mixture of the evolved states, which corresponds to the intuitive

result that if we observe each particle in a system we would find the total state

to be the same as if we would observe the evolution of the entire system. As

we have seen σUt describes the unitary transformation of a state into the evolved

state.

But these transformations tell only have the story, because we are not only inter-

ested in the transformation, but we want to find out what the time dynamics are

like. The equation governing the dynamics is called the Liouville-von Neumann

equation, which can be seen as the analogue of Schrödinger equation for density

operators.

Liouville von Neumann theorem. Let ρ(t) ∈ S(H) be an arbitrary density

operator, σUt : S(H) → S(H) the unitary time evolution described by the time-

independent Hamiltonian H ∈ L(H). Then the dynamics of the time evolution

are governed by the Liouville-von Neumann equation.

d

dt
ρ(t) = − i

~
[H, ρ(t)] (2.9)

Proof. To proof the theorem we need to take the derivation of ρ(t).

dρ(t)

dt
= lim

dt→0

1

dt
[ρ(t+ dt)− ρ(t)]

With ρ(t+ dt) = exp

[
− i
~
Hdt

]
ρ(t) exp

[
i

~
Hdt

]
we get

dρ(t)

dt
= lim

dt→0

ρ(t+ dt)− ρ(t)

dt
= lim

dt→0

1

dt

[(
I − i

~
Hdt+ ...

)
ρ(t)

(
I +

i

~
Hdt+ ...

)
− ρ(t)

]
All higher order terms will vanish when dt goes to zero, so the only terms left

over are
dρ(t)

dt
= − i

~
Hρ(t) +

i

~
ρ(t)H = − i

~
[H, ρ(t)]
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2.3 Evolution of open systems

Remarks : This theorem was worked out by John von Neumann, Liouville died

years before quantum mechanics came around. It is called the Liouville von

Neumann theorem because of the similar form to Liouvilles theorem of classical

mechanics which states
∂ρ

∂t
= −{ρ,H}

Where H is the classical Hamilton function, ρ is the density function and {·, ·}
are the Poisson brackets.

2.3 Evolution of open systems

2.3.1 Time evolution of simple open systems

Assume we have a lab system described by the Hilbert space HS. In section

2 we have seen how a state vector in this system evolves in time if we keep it

isolated. But real physical systems are never isolated, and a system HS with

interacting with a environment HE is called a open system. (For example a

heat bath interacting with a particle). The total Hilbert space of system and

environment is found by tensoring both Hilbert spaces, H = HS ⊗ HE. The

Hamiltonian of such an open system can be separated H = HS +HE +HI where

HS describes the behaviour of the system, HE describes the environment and HI

describes the interaction between system and environment.

Now assume we prepared the state of the system to be ρ and the state of the

environment is described by ω. Then the initial total system can be seen in the

following figure.

Total System
HS ⊗HE, ρ⊗ ω

System

Environment
HE, ω

HS, ρ
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Now the system starts interacting with the environment and we measure the state

of the system again at a given time t.

The density operator of the system HS is now given by the reduced density

operator of the total System at the time t.

ρ(t) = trE

[
Ut(ρ(t0)⊗ ω)U †t

]
(2.10)

Example: Swap gate As an example we construct a swap gate for a two

qubit system. The interaction Hamiltonian Hswap has the properties

Hswap |ψ〉S ⊗ |φ〉E → |φ〉S ⊗ |ψ〉E.

For a two qubit system this Hamiltonian called the Heisenberg Exchange Hamil-

tonian and it is easy to show that it is self-adjoint and unitary, i.e H†swap = Hswap

and H2
swap = I.

The unitary time evolution operator Ut is given by

Ut = exp [iHswapt] = cos(t)I + i sin(t)Hswap

This can be seen using the operator exponential (2.2) and H2
swap = I.

Putting this into (2.10) we get.

ρ = trE [exp[−iHswapt](ρ⊗ ω) exp[iHswapt]]

= trE [cos tI − i sin tHswap(ρS ⊗ ω)(cos tI + i sin tHswap)]

= trE[cos2 t(ρ⊗ ω) + sin2 tHswap(ρ⊗ ω)Hswap

−i sin t cos tHswap(ρ⊗ ω) + i sin t cos t(ρ⊗ ω)Hswap︸ ︷︷ ︸
=0

]

= trE[cos2 t(ρ⊗ ω) + sin2 tHswap(ρ⊗ ω)Hswap]

We can see in this equation that the system performs an oscillation between it’s

initial state and the environment state. If we now choose the environment to be

in state ω =
1

2
1 and we switch off the interaction at t =

π

2
this leads to

ρ = trE

[
Hswap(ρ⊗

1

2
1)Hswap

]
=

1

2
1 (2.11)

This means that independent of the initial state the final state of the system will

be the maximum mixed state ρS =
1

2
1. This transformation is obviously not

unitary because pure states are transformed into complete mixtures.

2.3.2 Introduction to quantum channels

Let ρ ∈ S(HS) be the density operator of the open system, ω ∈ S(HE) be the

density operator of the environment and Ut ∈ L(H) the time evolution operator.
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We have seen in section 2.3.1 that the open system transforms in time according

to

ρ(t) = trE

[
Utρ(t0)U †t

]
(2.12)

As seen in the Swapgate example this transformation is not unitary in general .

In this section these sorts of transformations will be treated more rigorously, for

a general unitary transformation U ∈ L(HS ⊗HE). A general transformations is

visualized in in the left diagram of figure 2.1. It describes a unitary interaction

between system and environment, changing the state of the system ρ as well as

the state of the environment ω. Assume we perform such a transformation, then

we are most of the time not interested what happens in the environment but

we want to know how the state of the system changes. Thus, mathematically

speaking, we are looking for a transformation E which transforms ρ to its final

state ρ′. This transformation E is called a channel. This nomenclature can be

-ρ

U

- ρ′

-ω - ω′

-ρ E - ρ′

Figure 2.1: Unitary evolution of HS ⊗ HE (left), non-unitary quantum channel

HS → H′S (right)

motivated by the following picture:

We send a prepared qubit from point A to point B, for example a electron through

a conducting wire, and we can only measure its state at point A and point B. In

classical communications the transmission medium, in this case the wire, is called

a channel. In our case the electron’s state is given by a density operator ρ and

the channel E describes the changes of the state while it was being transmitted

through the wire. For example the electron might collide with the lattice or other

electrons which might lead to a change (error) in its state. The example of a noisy

channel can be seen in example 2.3.5, but to understand it we first need to gain

a mathematical understanding of channels.
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2.3.3 Mathematical properties of channels

As we have seen a channel E is a transformation between two quantum states.

This means it is a map

E : S(H)→ S(H′)
E : ρ→ ρ′ (2.13)

To discuss the properties of the following definitions are needed.

Definition 2.5. A map E : S(H) → S(H′) is called positive if it maps positive

operators to positive operators.

Definition 2.6. A map E is called completely positive if

IB ⊗ E : S(HB ⊗H)→ S(HB ⊗H′) is positive for all possible extensions HB of

H.

Definition 2.7. A mapping E : S(H)→ S(H′) is called trace preserving if

tr[ρ] = tr[E(ρ)] = tr[ρ′]

Since density operators are positive operators, we need a mapping between two

density operators to be positive. In physical systems, channels are always sur-

rounded by an environment, thus we not only want to require positivity, but

complete positivity. An example of a map which is positive but not completely

positive is the partial transpose, which can be seen at the bottom of this page.

Since density operators have unit trace the following equation must hold tr[ρ] =

tr[E(ρ)] = 1. To ensure this we require every channel to be trace preserving. The

last requirement we want to make is linearity, this is because we want to preserve

the indistinguishability of convex decompositions. Meaning, that if we have two

convex decompositions we want to them to evolve into the same density operator.

ρ = λρ1 + (λ− 1)ρ2 = µρ′1 + (µ− 1)ρ′2 (λ, µ ∈ [0, 1])

E(ρ) = λE(ρ1) + (λ− 1)E(ρ2) = µE(ρ′1) + (µ− 1)E(ρ′2)

A map with these three properties is called a channel.

Definition 2.8. A mapping E : S(H) → S(H′) is called a channel, if E is trace

preserving, completely positive and linear.

The following example will show why we positivity is not sufficient.
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2.3 Evolution of open systems

Example: Partial transpose We take the map: E : ρ→ ρT . It is obviously

trace preserving, positive and linear. But it is not completely positive. For

example we take a two qubit System in the state |ψ〉 =
1√
2

[|00〉+ |11〉]

The density matrix is given by ω =
1

2
(|00〉 〈00|+ |11〉 〈00|+ |00〉 〈11|+ |11〉 〈11|]

Or in matrix form:

ω =


1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2


Now we use the partial transpose (I ⊗ E)(ω) This gives us

ωΓ =


1
2

0 0 0

0 0 1
2

0

0 1
2

0 0

0 0 0 1
2


ωγ has the eigenvalues {1

2
, 1

2
, 1

2
,−1

2
}, which means it is not positive and thus no

valid density operator. This means that ρ→ ρT is not extendible to open systems

and thus it is no channel.

2.3.4 Stinespring dilation theorem

Let us now make an important link back to the equation of an open system

in (2.12). We could of course prove directly that this map is trace preserving,

linear and completely positive (which it is), but we want to use a more abstract

formulation by Stinespring which will have some useful consequences.

Stinespring dilation theorem. For every channel (i.e. completely positive,

trace preserving map) E : S(H)→ S(H′) there exists a Hilbert space HE, a pure

state ξ and a unitary operator U : H⊗HE → H′ ⊗H′E such that

E(ρ) = trE
[
U(ρ⊗ ξ)U †

]
∀ρ ∈ S(H) (2.14)

We call a triplet (HE,U,ξ) a dilation.

Proof. Stinesprings actual theorem goes much further than the version used here,

for nice version of the proof I recommend to read [4] p. 201-202.

A visualization of a Stinespring dilation can be seen in figure 2.2, in which we

found a combination of a auxiliary Hilbert space with an initial pure state ξ and

a unitary transformation U to describe the behaviour of the quantum channel E .

24



Time Evolution of Density Operators [Quintin Meier]

ω = ρ⊗ ξ ω′-

?

ρ - ρ′

?

U(ρ⊗ ξ)U † -

E(ρ) -

trE trE

Figure 2.2: Diagram of a quantum channel E of the System ρ with unitary oper-

ator U and environment state ξ

Such dilations are not unique, in fact there are multiple possible dilations for

each channel. By allowing us to describe a channel by finding unitary trans-

formations of state vectors of the system and a arbitrarily chosen environment,

Stinespring Dilations are very to describe channels, because in most cases such

unitary transformations are much easier to find than the expression for E .

2.3.5 Operator-sum representation

A direct consequence of the Stinespring Dilation theorem is that each channel

E can be expressed using a countable set of bounded operators {Aµ}µ. This is

called the Kraus representation theorem. The operators Aµ are called the Kraus

operators.

Kraus representation theorem. A mapping E : S(H) → S(H′) is a channel

if and only if there exist countable set of bounded operators Aµ such that

E(ρ) =
∑
µ

AµρA
†
µ (2.15)

and ∑
µ

A†µAµ = I

Proof. To proof this we assume we found a dilation (HE, U, ξ) for our channel,

where ξ = |0〉E 〈0| ∈ S(HE) is the pure state of the environment and U : HS ⊗
HE → H′S ⊗ H′E is a unitary operator. The channel of the subsystem is found

by tracing out the environment.

ρ′ = E(ρ) = trE
[
U(ρS ⊗ ξ)U †

]
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2.3 Evolution of open systems

Now we rewrite the equation

trE
[
U(ρS ⊗ ξ)U †

]
= trE

[
U(ρS ⊗ |0〉E 〈0|)U

†]
=
∑
µ

〈µ|U(ρs ⊗ |0〉E 〈0|)U
† |µ〉E

=
∑
µ

〈µ|U(
∑
i

|ψi〉S 〈ψi| ⊗ |0〉E 〈0|)U
† |µ〉E

=
∑
µ

〈µ|U |0〉E (
∑
i

|ψi〉S 〈ψi|) 〈0|U
† |µ〉E

=
∑
µ

〈µ|U |0〉E︸ ︷︷ ︸
Aµ

ρs 〈0|U † |µ〉E︸ ︷︷ ︸
A†µ

=
∑
µ

AµρsA
†
µ

To prove that
∑
µ

A†µAµ = I we start by defining the unitary operation.

U : H⊗HE → H′ ⊗H′E
U : |ψ〉 ⊗ |0〉 → |Ψ〉

where |ψ〉 ⊗ |0〉 ∈ H ⊗HE is a orthonormal basis vector, and |Ψ〉 ∈ H′ ⊗H′E

|Ψ〉 = U |ψ〉 ⊗ |0〉 =
∑
µ

Aµ |ψ〉S ⊗ |µ〉E

Since U is unitary, we have that

〈Ψ|Ψ〉 = 〈0| ⊗ 〈ψ|U †U |ψ〉 ⊗ |0〉 = 〈ψ|ψ〉 〈0|0〉 = 1

Using the Kraus operators we get

〈Ψ|Ψ〉 =
∑
µ

〈µ|E ⊗ 〈ψ|S A
†
µAµ |ψ〉S ⊗ |µ〉E

=
∑
µ

〈ψ|A†µAµ |ψ〉S 〈µ|µ〉E︸ ︷︷ ︸
=1

=
∑
µ

〈ψ|A†µAµ |ψ〉S

= 〈ψ|
∑
µ

A†µAµ |ψ〉 = 1 ∀ |ψ〉 ∈ H

=⇒
∑
µ

A†µAµ = I

A consequence of the non-uniqueness of dilations is that multiple dilations lead

to multiple sets of Kraus operators: This means that there are multiple sets of

26



Time Evolution of Density Operators [Quintin Meier]

Kraus operators for each channel. More specific, each dilation leads its own set of

operators as can be seen easily in the proof of the Kraus representation theorem.

However, different sets of Kraus operators are not independent. Two sets of

operators which define the same channel are connected by a partial isometry.

Definition 2.9. A map φ : LA(H) → LB(H) where LA(H),LB(H) ⊂ L(H) is

called a partial isometry if

φ ◦ φ† ◦ φ = φ

Corollary. If two sets of Kraus Operators LA(H),LB(H) ⊂ L(H) define the

same channel ∑
j

AjρA
†
j =

∑
k

BkρB
†
k Aj ∈ LA(H), Bk ∈ LB(H) (2.16)

then

Aj =
∑
k

BkTjk

And
∑
k

Tjk is a partial isometry, i.e.
∑
j

TjkT
†
jk = I

Proof. First we have to prove, that partial isometry is equivalent to
∑
j

TjkT
†
jk = I.

We define

φ(B1, ..., Bn) := (φ1(B1, ..., Bn), ..., φm(B1, ..., Bn))

with

φj(B1, ..., Bn) :=
∑
k

BkTjk and φ†k(A1, ..., Am) =
∑
j

AjT
†
jk

where n = dim(LA(H)) and m = dim(LB(H)).

If φ is a partial isometry the following equation must hold

φ ◦ φ† ◦ φ(B1, ..., Bn) = φ(B1, ...Bn)

Thus putting in the definition of φ we get for the j′-th component.

(
φ ◦ φ† ◦ φ(B1, ...Bn))

)
j′

=
∑
k′

(∑
j

(∑
k

BkTjk

)
T †jk′

)
Tj′k′

=
∑
k′

∑
k

(Bk

∑
j

TjkT
†
jk′︸ ︷︷ ︸

=δkk′I

)Tj′k′

!
=
∑
k′

Bk′Tj′k′ = φ(B1, ..., Bn)j′
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This proves that
∑
j

TjkT
†
j′k′ = I and we will use this to prove the corollary.

∑
j

AjρA
†
j =

∑
j

∑
k,k′

BkTjkρT
†
jk′B

†
k′ =

∑
j

∑
k,k′

BkTjkT
†
jk′ρB

†
k′

This means that from (2.16) we follow that∑
k,k′

Bk

∑
j

TjkT
†
jk′︸ ︷︷ ︸

=δkk′I

ρB†k′
!

=
∑
k

BkρB
†
k

⇐⇒
∑
j

TjkT
†
jk = I

Thus,
∑
k

Tjk is a partial isometry.

To see the principle of dilations and Kraus operators we look at the following

example.

Example: Depolarizing Channel. In this example we send a qubit with

initial state |ψ〉 through a channel. The channel is very noisy and with a high

possibility the qubit’s state will be changed when it comes out of the channel. If

this happened we say that a error occurred.

The possible states of the qubit after it went through the channel are |ψ〉 (no

error occurred), σ1 |ψ〉 (bit flip), σ2 |ψ〉 (phase flip), σ3 |ψ〉(phase flip & bit flip),

where σi are the Pauli matrices and describe rotations in spin space. Each of

these cases occurs with probability of 25 %.

We now want to find the channel E(ρ) which describes the transformation of a

arbitrary qubit state ρ.

The dilation we choose is the combination (HE, U, ξ) where U is the transfor-

mation we see below, the pure state ξ is given by |0〉 〈0|E and HE is a four

dimensional Hilbert space with orthonormal basis {|0〉 , |1〉 , |2〉 , |3〉}
The unitary transformation is given by

U : |ψ〉S⊗|0〉E →
1

2
|ψ〉S⊗|0〉E+

1

2
[σ3 |ψ〉S ⊗ |1〉E + σ2 |ψ〉S ⊗ |2〉E + σ3 |ψ〉S ⊗ |3〉E]

With σ2
1 = σ2

2 = σ2
3 = 1 it can easily be checked that this transformation is in

fact unitary.

The Kraus operators are found with in the following way

Aµ = 〈µ|U |0〉E
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and we get a set of Kraus operators

A0 =
1

2
I; A1 =

1

2
σ1; A2 =

1

2
σ2; A3 =

1

2
σ1

With the identity σ†iσi = σ2
i = 1, it is easy to see that

∑
µ

A†µAµ = 1

The channel E can now be found using the equation from Kraus representation

theorem.

E(ρ) =
∑
µ

AµρA
†
µ =

1

4
(ρ+ σ1ρσ1 + σ2ρσ2 + σ3ρσ3) =

1

2
1

Thus, each state is transformed into the maximum mixed state. This is the

same result we get from the swap gate we constructed in section 2.3.5. This

means that we found two different dilations which describe the same channel.

This is an example that shows that dilations are in fact not unique, and that

different dilations lead to a different Kraus representations. This example also

shows that open systems can lead to decoherence of quantum objects, because

any superposition of spin states will be broken when the qubit leaves the channel

and the qubit will be in either one of the states, |↓〉 or |↑〉.

2.4 Summary

The density matrix formalism is the most complete description of a quantum sys-

tem, it generalizes the state vector formalism described by Schrödinger equation.

Using the knowledge from Schrödinger equation we derived the time evolution of

density matrices. We found that density matrices of isolated evolve under unitary

evolution and that the time dynamics are given by the Liouville von Neumann

equation. The discussion of open systems, thus systems interacting with a envi-

ronment, lead us to the concept of quantum channels. An overview of this can

be seen in the following table.

As we have seen in isolated systems the state transformation behaves unitary.

state vectors isolated systems open systems

State transformation unitary U unitary maps σU channels E
Dynamics Schrödinger eq. L. von Neumann (master eq.)

This means that the evolution is reversible. For open systems we have seen that

it is possible that a pure state is mapped onto a mixed state. This non-unitary

behaviour is non-reversible.
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2.4 Summary

However, this non-reversibility can lead to interesting effects like decoherence like

we have seen in the example of the depolarizing channel.

All in all the density operator formalism and it’s time evolution provides a num-

ber of interesting concepts, which will be discussed further in the course of this

proseminar.
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Chapter 3

Quantum Marginal Problem:

Specific Results

Francisco Kim
supervisor: Johan Aaberg

Quantum marginal problems deal with the existence of a joint

multipartite state from a given set of reduced states. As an ex-

ample, we show that in a three-qubit system, the pure states are

uniquely determined by its bipartite margins. We furthermore

discuss the “polygon inequalities” that determine whether a col-

lection of single-qubit states are compatible with a joint pure

n-qubit state.

3.1 Introduction

Given a set of density operators, can these be regarded as margins of a state on

a larger joint system? Or conversely, if we are given a composite system, what

form would its reduced density operators have?

Quantum marginal problems examine the condition of existence of a joint state

arising from a given set of density operators, or alternatively try to determine

the form of the reduced density operators from a given joint multipartite state.

Contrary to probablility theory, the margins of a pure state in the quantum world

are not always pure, and this can render the problem nontrivial.

In this chapter, we shall first consider briefly the definition of a margin and the

difference between a classical margin and a quantum margin, as well as the notion

of entanglement. We will then have a look at some of the quantum marginal

problems, namely the Schmidt decomposition and the three-qubit-system case
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3.2 Some Definitions and Notions

with the two-particle margins of which we are going to see the proof-sketch, and

finally, the n-qubit-system case with the one-particle margins which will make us

acquainted with the polygon inequalities.

3.2 Some Definitions and Notions

3.2.1 Margin

Let us consider a bipartite system composed by two Hilbert spaces, i.e. HAB =

HA⊗HB. Given two linear operator bases {LiA}, {L
j
B} in HA, HB respectively,

the density operator of the bipartite system can be expressed in the operator-basis

LiA ⊗ L
j
B :

ρAB =
∑
i,j

cij L
i
A ⊗ L

j
B. (3.1)

The margin A of the composite system AB is defined to be the reduced density

operator ρA that is defined as:

ρA :=
∑
i,j

cij L
j
B Tr(LiA) =: trB(ρAB), (3.2)

where we trace out the system in which we are not interested. Similarly, the

margin B is defined as:

ρB :=
∑
i,j

cij Tr(LiA)LjB =: trA(ρAB). (3.3)

We can extend these definitions to an n-party state and its m-party reduced states

(m < n). Let this n-party state be in the Hilbert space H =
⊗

i∈I Hi = HJ⊗HJ̄ ,

where I = {1, 2, ..., n} is an index set with a subset J and its complement set J̄

(J ⊂ I, J̄ = I\J). Then margin ρJ is simply the reduced density operator ρJ :

ρJ = trJ̄(ρI). (3.4)

3.2.2 Classical Margin VS Quantum Margin

This concept of margin exists also in probability theory if we consider the proba-

bility distribution as a “state” [1]. In other words, for a given probability density

pI(xI) := p(x1, x2, ..., xn) in RI , the margin pJ is given by

pJ(xJ) =

∫
RJ̄
pI(xI) dxJ̄ . (3.5)
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As we can see, the analogy between the definition of a classical margin and that

of a quantum margin is obvious in the sense that one considers only the wanted

subsystem from the whole system.

In the classical case, a pure state corresponds to the perfect knowledge of the

variables, i.e. every probability is either 0 or 1 [2]. Furthermore, this deterministic

character is preserved also in its one-variable margins: the one-variable marginal

distributions of a pure joint distribution are also pure. This implies that this

assertion is a two-way statement, namely that a multi-variable state is pure if

and only if its univariant (≡ one-party) margins are pure.

But in the quantum case, this statement does not hold anymore. A set of pure

univariant margins gives arise to a pure joint multipartite state, but the uni-

variant margins of a given pure multipartite state are not always pure.

The following example illustrates this result. Let us consider the Bell state

|Φ+〉 = |00〉+|11〉√
2

composed of two qubits (labelled A and B). The density op-

erator ρ = |Φ+〉〈Φ+| of this Bell state is clearly a pure state. But computing the

reduced density operator ρA, we can observe that it is a mixed state:

ρA = trB(ρ) (3.6)

= trB

((
|00〉+ |11〉√

2

)(
〈00|+ 〈11|√

2

))
(3.7)

=
trB (|00〉 〈00|) + trB (|11〉 〈00|) + trB (|00〉 〈11|) + trB (|11〉 〈11|)

2
(3.8)

=
|0〉 〈0| 〈0|0〉+ |1〉 〈0| 〈1|0〉+ |0〉 〈1| 〈0|1〉+ |1〉 〈1| 〈1|1〉

2
(3.9)

=
|0〉 〈0|+ |1〉 〈1|

2
. (3.10)

We can check that it is indeed a mixed state by computing tr(ρ2
A) and verifying

that it is smaller than 1: tr(ρ2
A) = 1

2
< 1.

3.2.3 Separability and Entanglement

Separability of a pure state

Given a pure state |ψ〉 of a composite system HA ⊗ HB with the orthonormal

basis of each system |ai〉 and |bi〉, we can expand |ψ〉 in the following general way:

|ψ〉 =
∑
i,j

cij |ai〉 ⊗ |bj〉, (3.11)
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where cij ∈ C are coefficients. If cij = cAi × cBj , then |ψ〉 can be written as a

tensor product of two pure states:

|ψ〉 = |ψA〉 ⊗ |ψB〉 (3.12)

This is what we call a product state.

This definition can be extended to a multicomponent system. A pure state of a

n-party system is in a product state if and only if:

|ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉. (3.13)

Separability of a mixed state

For a mixed state ρAB in a bipartite system HA ⊗HB, the general expansion is

the equation (3.1). If this can be rewritten as

ρAB =
∑
k

pk ρ
k
A ⊗ ρkB, (3.14)

with ρkA and ρkA being mixed states of the respective subsystems and
∑

k pk = 1,

then ρAB is called a separable state. If ρAB cannot be written in this form

(3.14), then it is an entangled state.

The particular case of a separable state

ρAB = ρA ⊗ ρB (3.15)

is called a product state. It is worth mentioning here that in a pure state case,

a state is in a product state if and only if it is separable.

In a n-party multicomponent system, a mixed state is fully separable if and

only if

ρAB =
∑
k

pk ρ
k
1 ⊗ · · · ⊗ ρkn (3.16)

with ρkA and ρkA being mixed states of the respective subsystems and
∑

k pk = 1.

3.3 Quantum Marginal Problems

With the definitions and concepts we encountered in the previous section, we can

now start looking at three particularly interesting quantum marginal problems

and at its results.

36



Quantum Marginal Problem: Specific Results [Francisco Kim]

3.3.1 The Schmidt Decomposition

Statement

Probably one of the most famous results of the quantum marginal problems, the

Schmidt decomposition, demonstrates how tightly the two univariant margins of

a bipartite system are related.

Assume that we are given a pure state |ψ〉 in a composite system HA⊗HB, with

dimHA = n, dimHB = m, and n > m without loss of generality. Then it follows

that

∃ orthonormal set {|u1〉, . . . , |un〉} for system A and

{|v1〉, . . . , |vm〉} for system B such that

|ψ〉 =
m∑
i

λi |ui〉 ⊗ |vi〉 (3.17)

with λi ≥ 0 and
∑

i λ
2
i = 1.

This is the so-called Schmidt decomposition. One can observe that it is not

a trivial decomposition, since the general decomposition in the composite basis

contains every possible combination of basis elements |ui〉 and |vj〉 (1 ≤ i ≤ n and

1 ≤ j ≤ m). It follows straightforwardly from equation (3.17) that the reduced

density operators ρA and ρB are isospectral, i.e. they have the same non-zero

eigenvalues:

ρA =
m∑
i=1

λ2
i |ui〉〈ui| (3.18a)

ρB =
m∑
i=1

λ2
i |vi〉〈vi|. (3.18b)

Proof-sketch

The proof of the Schmidt decomposition can be more or less easily done with the

so-called singular value decomposition [3].

For simplicity, let us consider the case where the dimension of the Hilbert space

is the same for both systems, i.e. n = m. Then the singular value decomposition

states that a square matrix A can be decomposed to A = U DV where U, V, are

unitary matrices and where D is a diagonal matrix with non-negative entries.
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Let us now write |ψ〉 ∈ HA ⊗ HB in the orthonormal basis |j〉 of the system A

and in the orthonormal basis |k〉 of the system B:

|ψ〉 =
∑
j,k

ajk|j〉|k〉.

Since the coefficients ajk can be written in a matrix, we can apply the singular

value decomposition, and we obtain:

|ψ〉 =
∑
j,k

ajk|j〉|k〉

=
∑
l,j,k

ujl dll vlk|j〉|k〉.

Defining two new states and a value, |lA〉 :=
∑

j ujl|j〉, |lB〉 :=
∑

k ulk|k〉, λl :=

dll, we have:

|ψ〉 =
∑
l,j,k

ujl dll vlk|j〉|k〉

=
∑
l

λl |lA〉|lB〉. (3.19)

The last equation (3.19) is precisely the statement of the Schmidt decomposition,

equation (3.17).

We can also use a similar proof for the case n 6= m: the matrix A in the singular

value decomposition A = U DV would be then a m × n matrix, D an m × n

diagonal rectangular matrix, U ∈ Un×n, and V ∈ Um×m where U is the set of

unitary matrices.

3.3.2 The Pure Three-Qubit State and Its Two-Particle

Margins

In this subsection, we consider pure three-qubit states and their bivariant (≡
two-party) marginal states, which is the subject of the publication [4].

For almost every pure three-qubit state, say ρABC , it turns out that its two-party

marginal states ρAB, ρBC , ρAC do not contain more information than ρABC (see

“mutual information” in the chapter written by Felix Bischof). In other words,
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almost every pure three-qubit state can be completely determined by

its bivariant margins.

In what follows we shall prove this assertion. However, let us first point out that

simple consistency conditions may not be enough to guarantee that a collection

of density operators are compatible with a global state.

Necessary Conditions

Not every arbitrary set of density operators can be margins of a global joint

state. For instance, it is necessary for the reduced density operators to obey the

consistency conditions:

TrQ(ρP∪Q) = TrR(ρP∪R), (3.20)

where P, Q, R are any subsets such that P and Q are disjoint, and P and R are

disjoint.

For instance, the univariant reduced density operator ρA arising from the bipartite

reduced density operator ρAB has to be the same as the ρA arising from ρAC .

However, this condition is not a sufficient condition: one must verify that the set

of states satisfying this consistency condition really corresponds to a legitimate

three-party state. Consider the following two-qubit states ρAB, ρBC , and ρAC
defined in the following way:

ρAB = ρBC = ρAC = |α〉〈α| with

|α〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) , (3.21)

i.e. the pairs are all singlets. The one-particle reduced states of these two-qubit

states satisfy the consistency condition above, equation (3.20). But these states

cannot give rise to a legitimate three-party state, since one system cannot be

maximally entangled with two other systems simultaneously [4].

Pure States of The Three-Qubit Systems

One important ingredient of the proof is that all pure states of a three-qubit

system are equivalent under local unitary transformations to the following family

of states :

|η〉 = a|000〉+ b|001〉+ c|010〉+ d|100〉+ e|111〉, (3.22)

each digit within the kets referring to qubit A, B, and C [5], [6].
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Idea of the proof

In order to prove that almost every pure three-qubit state can be uniquely de-

termined by its bipartite margins, we show that the above state |η〉, equation

(3.22), is the only state consistent with its bivariant reduced states, except when

b = c = d = 0. The first step is to define a new three-qubit density operator ω

whose two-party margins are the same as those of the state |η〉, which can be a

priori pure or mixed (i.e. ω is a general three-qubit density operator). If we show

that this ω must be in the form η using the arguments of the subsection 3.3.2

(page 39), we therefore show that |η〉 is indeed the only state - whether pure or

mixed - consistent with its two-party reduced states.

Purifying ω with an environment that we call E, we obtain a pure state |ψ〉 on a

larger system (A,B,C, and E), and

ω = trE |ψ〉 〈ψ| . (3.23)

Since ω must have the same two-party reduced states as |η〉, we first get one

constraint on the form of |ψ〉 from the reduced state ρAB of |η〉, equation (3.22) :

ρAB = |φ0〉〈φ0|+ |φ1〉〈φ1|, (3.24)

where

|φ0〉 = a|00〉+ c|01〉+ d|10〉 (3.25)

|φ1〉 = b|00〉+ e|11〉. (3.26)

With this constraint from ρAB of |η〉, |ψ〉 must then have the form

|ψ〉 = |φ0〉|E0〉+ |φ1〉|E1〉, (3.27)

where |φ0〉, |φ1〉 are in the Hilbert space corresponding to the qubit A and B, and

|E0〉, |E1〉 are in the Hilbert space of qubit C and the environment E. Here, we

point out that |E0〉 and |E1〉 are orthonormal.

Expanding |E0〉, |E1〉 with the states of C and the states of E in the following

way,

|E0〉 = |0〉|e00〉+ |1〉|e01〉 and |E1〉 = |0〉|e10〉+ |1〉|e11〉, (3.28)

we can rewrite |ψ〉:
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|η〉 |ψ〉
〈11| ρBC |11〉 |e|2 |c|2〈e01|e01〉+ |e|2〈e11|e11〉
〈11|ρAC |11〉 |e|2 |e|2〈e11|e11〉+ |d|2〈e01|e01〉
〈01|ρBC |10〉 bc∗ bc∗〈e00|e11〉

Table 3.1: Further constraints on the form of |ψ〉 from the two-particle reduced

density operators of |η〉

|ψ〉 = (a|00〉+ c|01〉+ d|10〉) (|0〉|e00〉+ |1〉|e01〉)
+ (b|00〉+ e|11〉) (|0〉|e10〉+ |1〉|e11〉) . (3.29)

We now use other constraints from the other bipartite reduced states of |η〉.
In particular, we compute the elements 〈11| ρBC |11〉, 〈11|ρAC |11〉, 〈01|ρBC |10〉
calculated from |η〉 and |ψ〉, and we require that the results must be the same

whether it is from |η〉 or |ψ〉 (cf. Table 3.1).

Requiring the elements of the first column in Table 3.1 to be equal to the elements

of the second column, and using the orthonormality of |E0〉 and |E1〉, we obtain

the following results:

=⇒ |e01〉 = 0 & 〈e11|e11〉 = 1

=⇒ |e10〉 = 0 & 〈e00|e00〉 = 1,

|e00〉 = |e11〉,

for b, c, d 6= 0. Plugging this back into the expansion |ψ〉, equation (3.29), we

obtain

|ψ〉 = (a|000〉+ b|001〉+ c|010〉+ d|100〉+ e|111〉)|e00〉 (3.30)

= |η〉|e00〉. (3.31)

We can see that this equation (3.31) contains already |η〉. Tracing out the en-

vironment E from equation (3.31), it follows that ω = |η〉 〈η|. This leads to the

conclusion that |η〉 - which is the generic form of all the pure states - is uniquely

determined by its two-particle reduced states, which is the statement we wanted

to prove.
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Exceptions

The above generic property that almost all the pure states of a three-qubit system

are completely characterized by its bipartite reduced states, does not apply to

pure states that are equivalent to the the following form under local unitary

transformations:

α|000〉+ β|111〉, (3.32)

namely, when b = c = d = 0 in |η〉. For instance, the two distinct states

α|000〉+β|111〉 and α|000〉+ eiθβ|111〉 have the same two-particle reduced states

although they are two different states.

3.3.3 Polygon Inequalities

Is it possible to find a pure n-qubit state from given n one-qubit reduced states?

This non-trivial question was solved in the [2] which shows that the necessary

and sufficient condition for the existence of this pure n-qubit state is the so-called

polygon inequalities.

The polygon inequalities are a set of inequalities

λk ≤ λ1 + · · ·+ λk−1 + λk−1 + · · ·+ λn, (3.33)

where λk is the smaller eigenvalue of the qubit k, i.e. λk ≤ 1
2
. In other words,

the smaller eigenvalue of each qubit must be smaller than the sum of the smaller

eigenvalues of all the other qubits. These inequalities completely characterize the

possible sets of eigenvalues, hence the possible one-particle reduced states of a

pure n-qubit state.

3.4 Conclusion

A quantum marginal problem, which deals with the existence of a joint mul-

tipartite state from a given set of marginal states, is in general a complicated

problem. Many considerations have to be taken into account, such as the pure-

ness of the states, the consistency conditions as well as the compatibility of the

reduced states with the whole multipartite state. In a three-qubit system, it turns

out that almost all pure states of this system can be uniquely determined by its

bipartite reduced states. Furthermore, a given set of one-party qubit states can

give rise to a pure multipartite state in a larger joint system if and only if their

smaller eigenvalues satisfy the polygon inequalities. These cases are only specific
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examples of the quantum marginal problem. Many similar problems have been

treated in the literature, and many others have yet to be examined.
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Chapter 4

Quantum Marginal Problem:

Computational Complexity

Gregor Kälin
supervisor: Christopher Portmann

This report introduces the basics of classical and quantum com-

putational complexity. The complexity classes P, NP and QMA

are introduced and discussed. Finally the fact that, the quantum

marginal problem is a QMA-complete problem, is discussed.

4.1 Introduction

The classification of problems into different classes of computation complexity

is an important field in computer science. But also physicists can learn things

from the complexity theory. In this report we want to give a introduction into

computational complexity, first for classical computations and then for quantum

computing. The aim is then to classify the complexity of the consistency problem,

by physicists also known as the quantum marginal problem.

4.2 Classical Computational Complexity

In this first section we introduce the most important definitions for classical

computation. This short summary follows chapter 1 and 2 in the book of Kitaev,

Shen and Vyalyi [1].

There are three reasons why I want to start with classical computation and not

directly with quantum computation. First of all classical computation is simpler
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to understand. Then there are many analogies between classical and quantum

computation and finally we’ll need some parts of classical computation to be able

work in the field of quantum computation.

To get a measure for the complexity of a given problem, we need a theoretical

machine for which we can write a program (algorithm) that solves the problem.

For this purpose computational scientists invented the Turing machine.

Definition 4.2.1 (Turing machine). A Turing machine consist of the following

components:

• a finite set S called the alphabet;

• a distinguished element ∈ S (blank symbol);

• a subset A ⊂ S, /∈ A, called the internal alphabet;

• a finite set Q whose elements are called states of the TM;

• an initial state q0 ∈ Q;

• a transition function:

δ : Q× S → Q× S × {−1, 0, 1}. (4.1)

A Turing machine needs hardware to work on. This hardware consists of a tape

which is devided into cells. The cells are labeled with integer numbers from zero

to infinity, this means that the hardware goes to infinity to the right side (see

diagram below). There’s also a head that marks the current position the machine

is working on.

Position of the head O
Cells so s1 . . . sp . . .

Cell number 0 1 . . . p . . .

At the beginning the input string of length n (if any) is written in the first n

cells, the rest of the cells is filled with the blank symbol . The position of the

head p is set to 0 and the Turing machine is in the state q0.

Once started the Turing machine performs the following procedure:

• it reads the symbol sp;

• it computes the transition function δ(q, sp) = (q′, s′,∆p);

• it writes the symbol s′ into cell p;
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• the head is moved by ∆p;

• the state is set to q′.

The machine repeats this until either the head is out of range (p ≤ −1) or

the transition function is not defined for the present configuration. Once it

has stopped, the machine outputs, beginning from the left, the symbols until

it reaches a symbol not belonging to A.

Example 4.2.1 (Swap of the first two bits). A simple example for a Turing

machine can be given for the function that takes an input string of length n ≥ 2

and swaps the content of the first two bits. Set A = B and S = A ∪ { }. The

transition function is then defined as:

δ(q0, 0) = (r0, 0,+1)

δ(q0, 1) = (r1, 1,+1)

δ(r0, 0) = (l0, 0,−1)

δ(r0, 1) = (l1, 0,−1)

δ(r1, 0) = (l0, 1,−1)

δ(r1, 1) = (l1, 1,−1)

δ(l0, 0/1) = (qf , 0,−1)

δ(l1, 0/1) = (qf , 1,−1).

The states q0, r0, r1, l0, l1 and qf are all elements of Q. The machine does the

following:

• First we memorize the content of the first cell by setting the state to r0 or

r1 respectively for s0 = 0 or s0 = 1.

• We move one cell to the right.

• We write the memorized content of the first cell into the second cell an

memorize the content of the second cell by setting the state to l0 or l1 .

• We move one cell to the left.

• We write the memorized content of cell two into the first cell and move one

step to the left.
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• Actually it doesn’t matter what state we chose (here qf ) in the last step,

because the machine stops anyway after this step since it’s out of range.

To measure the required “time” for a computation, we can define the Turing

machine time.

Definition 4.2.2 (Turing machine time). The Turing machine time T (n) is the

maximal number of steps a Turing machine needs to compute an input of length n.

We’ll only focus on a certain kind of problems. We consider problems that have

exactly two possible outcomes: “TRUE” and “FALSE”, or “YES” and “NO”.

Mathematically those functions are called predicates.

Definition 4.2.3 (Predicate). A predicate is a function F : B∗ → B, where B
denotes the set {0, 1}. The set A∗ is the set of all strings over the alphabet A.

By now we have a general measure for the “time” a function needs to be com-

puted. (Remark: We associate a Turing machine with a function F , if it computes

the correct value F (x) for every possible input string x.) The aim is to classify

the complexity of a function/problem, so we need a criterion. A possible and

intuitive criterion could be the following.

Definition 4.2.4 (Polynomial growth). A function f(n) is of polynomial growth

if f(n) ≤ cnd, for fixed c and d. Notation: f(n) = poly(n).

So we come to our first complexity class, if we apply this criterion to the Turing

machine time.

Definition 4.2.5 (Decidable in polynomial time). A predicate F : B∗ → B is

decidable in polynomial time if there exists a Turing machine that computes it in

time T (n) = poly(n), where n is the length of the input.

The class of all functions computable in polynomial time is denoted by P.

This class is very famous and all functions in P are also called efficiently com-

putable. Some examples for problems in P are addition of two numbers, calcu-

lating the greatest common divisor of two integer numbers or the problem of

deciding if a number is prime (shown in 2002).

A class of problems that are “harder” to solve is the class NP. This class we’ll

generalize to quantum computers in the second part.

Definition 4.2.6 (The class NP). A predicate F : B∗ → B belongs to the class

NP (non-deterministic polynomial) if there is a (partially defined) function R ∈ P

in two variables such that

F (x) = 1 =⇒ ∃y : ((|y| < q(|x|) and (R(x, y) = 1))

F (x) = 0 =⇒ ∀y : ((|y| < q(|x|)⇒ (R(x, y) = 0)),
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where q is a polynomial and |x| denotes the length of the string x.

Remark 4.2.1. In words, this kind of problem can be described by:

For a given string x, is there a string y such that R(x, y) = 1?

If the answer is “YES” output 1,

if the answer is “NO” output 0.

The string y is also called proof. The idea is that if we have given a proof we can

easily verify that the output of F is 1, but it can be arbitrarily complicated how

to find such a proof.

Remark 4.2.2. The class is called non-deterministic polynomial because an al-

ternative definition uses non-deterministic Turing machines. This is a machine

that can produce different outputs for a given input string (i.e. it has different

computational paths for one given input string).

An intuitive example for a problem in NP is the SAT-problem.

Problem 1 (SAT-Problem). Given a conditional expression consisting of “AND”,

“OR” and “NOT”, is there a vector x ∈ Bn that fulfills the conditional expres-

sion?

SAT stands for satisfiable.

4.3 Quantum Computational Complexity

This section gives an introduction to basic quantum computation and introduces

one important class of quantum computational complexity. Most definitions are

taken from [1].

4.3.1 Quantum Circuits

Let B = spanC{|0〉, |1〉} be the space of a 1-qubit system (e.g. the spin of an

electron: up and down). The two basis vectors |0〉 and |1〉 are assumed to be

orthogonal. The system of n qubits can be described by L = B ⊗ · · · ⊗ B = B⊗n.

Let U be an unitary operator on an r-qubit system B⊗r. Thus we can write

U =
∑

mXm,1 ⊗ · · · ⊗ Xm,r, where the Xm,t are unitary operators acting on

one single qubit. We want to define the operation of U on a larger system B⊗n
(n > r). We label the qubits we want U to operate on with pi, i = 1, 2, . . . , r.

U [p1, . . . , pr] :=
∑
m

Xm,1[p1] · · ·Xm,r[pr], (4.2)
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with Xm,s[ps] := IB⊗(ps−1) ⊗Xm,s ⊗ IB⊗(n−ps) .

Instead of defining a ”Quantum Turing machine” we use the formulation via

circuits. A circuit can be imagined as a series of unitary operators which act on

a n-qubit system one after the other. Such circuits can be physically realized.

The mathematical description is the following:

Definition 4.3.1 (Quantum circuit). Let A be a fixed set of unitary operators

(A is called basis and its elements (quantum) gates). A quantum circuit over

the basis A is a sequence U1[A1], . . . , UL[AL], U1, . . . , UL ∈ A. The Ai denote

(ordered) sets of qubits.

The operator realized by the circuit is U = UL[AL] · · ·U1[A1]. The number L is

called the size of the circuit.

Remark 4.3.1. Often the quantum circuit ifself is denoted by U . So if we talk

of a quantum circuit U , we actually mean a quantum circuit that realizes the

operator U .

Remark 4.3.2. We’re going to use descriptions of quantum circuits. This can

be seen as a list of the gates the circuit applies in the right order. The list can

be encoded (for example in binary code). We can know define a function Z(x)

that maps a input string x to a description of a quantum circuit. Remark that

for different input strings x and y the descriptions Z(x) and Z(y) can be totally

different (even if they have the same length).

This also implies that the dimension of the operator U realized by the quantum

circuit depends on the input x.

4.3.2 Basis for Quantum Circuits

A problem occurs here. Since there are uncountably many unitary operators

there’s no finite basis for them that would allow us to produce every unitary

operator we can imagine. This is a problem since this won’t allow us to build a

physical quantum computer (We cannot construct a physical divice with infinitely

many gates).

Remark 4.3.3. There is an infinite basis consisting only of operators acting on

one or two qubits that allows us to realize every unitary operator.

One way to solve the problem above is to allow inexact operators.

Definition 4.3.2 (Approximation of operators). The operator Ũ approximates

the operator U with precision δ if

‖ Ũ − U ‖≤ δ, (4.3)
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with the operator norm

‖ X ‖= sup
|ξ〉6=0

‖ X|ξ〉 ‖
‖ ξ ‖

. (4.4)

Theorem 4.3.1. Any unitary operator U on a fixed number of qubits can be re-

alized with precision δ by a poly(log(1
δ
))-size quantum circuit over the standard

basis (see next definition).

There is a polynomial Turing machine that constructs this circuit on the descrip-

tion of U .

This theorem is very important and allows us to build physical computer that

perform quantum circuits with high precision.

The standard basis mentioned in the theorem is given by:

Definition 4.3.3 (Standard basis). The basis Q = {H,K,K−1,Λ(σx),Λ2(σx)},
where

H =
1√
2

(
1 1

1 −1

)
, K =

(
1 0

0 i

)
and

Λk(U)(|x1, . . . , xk〉 ⊗ |ξ〉) =

{
|x1, . . . , xk〉 ⊗ |ξ〉 x1 · · ·xk = 0

|x1, . . . , xk〉 ⊗ U |ξ〉 x1 · · ·xk = 1

is called standard. (σx denotes the first Pauli matrix)

Now let’s go back to the computation of classical functions. We want to compu-

tate predicates.

A quantum computer is able compute with quantum states. To a quantum circuit

we input a vector |x〉 and it outputs a vector of the same dimension |F (x), g〉.
The g stands for garbage and it’s there to match the dimensions of in- and output

(the input has dimension n, the output has dimension 1). A simple image of what

we want:

x→ |x〉 circuit U−→ |F (x), g〉 → F (x)

Since we can construct operators only with a certain precision our output can

be a superposition of different states. So every time we measure our outcome

can be (totally) different. But we saw that the realized operator is near to the

wanted operator, so the output will often be correct. We need a criterion for the

“quality” of a quantum circuit:
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Definition 4.3.4. A quantum circuit U computes the predicate F : B∗ → B if

for any input x we have ∑
g

|〈F (x), g|U |x〉|2 ≥ 1− ε (4.5)

for a ε < 1
2
.

In words: The quantum circuit computes the correct result with probability 1−ε.

Remark 4.3.4. We sum over all g because we only care what’s the content of

the first qubit.

Remark 4.3.5. One can repeat this computation k times and then chose the

result that occurs the most as the final result. One can then show that the error,

that this final result is wrong, is given by perror < (2
√
ε(1− ε))k, 2

√
ε(1− ε) < 1.

This fact is called amplification of probabilities.

So if we want perror = exp(−poly(n)) it follows that k = poly(n).

Remark 4.3.6. The definition can be generalized to density matrices the follow-

ing way: ∑
g

|〈F (x), g|U |x〉|2 −→ tr
(
Π|F (x)〉UρU †

)
(4.6)

where ρ is the input density matrix and Π|F (x)〉 is the orthogonal projector on the

subspace C (|F (x)〉)⊗ B⊗(n−1).

4.3.3 The Classes BQP and QMA

For the completeness I give the definition of the quantum analogon to the class

P. This class won’t be important in the rest of the report.

Definition 4.3.5 (Quantum algorithm and BQP). A quantum algorithm for the

computation of a function F : B∗ → B∗ is a classical algorithm (i.e. Turing

machine) that computes a function of the form x 7→ Z(x), where Z(x) is a

description of a quantum circuit U which computes F (x) on empty input.

The function F is said to belong to the class BQP if there is a quantum algorithm

that computes F in time poly(n).

Remark 4.3.7. With “computes F (x) on empty input” we mean that the quan-

tum circuit U fulfills the condition given in equation 4.5, but instead of |x〉 we

have |0N〉, where N is the dimension of the quantum circuit U .

For us QMA will be the complexity class of interest, which is very similar to the

NP class. First we need the analogon of the verifying function R(x, y) that we

saw in the definition of the class NP.
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Definition 4.3.6 (Quantum verifier). A quantum verifier Vx is a quantum circuit

specified by a description Z(x).

A quantum verifier is called poly-time if the function x 7→ Z(x) is in P.

Definition 4.3.7 (QMA/BQNP). A predicate F is in QMA (or BQNP) if there

exists a poly-time quantum verifier Vx and a polynomial p such that

F (x) = 1 =⇒ ∃ quantum state ρ on p(|x|) qubits : tr
(
Π|1〉VxρV

†
x

)
≥ 2

3

F (x) = 0 =⇒ ∀ quantum state ρ on p(|x|) qubits : tr
(
Π|1〉VxρV

†
x

)
≤ 1

3
,

where Π|1〉 is an orthogonal projector on the subspace C (|1〉)⊗ B⊗(Nx−1).

This definition is taken from [2].

Remark 4.3.8. As for the NP class the state ρ is called a proof. The expression

tr
(
Π|1〉VxρV

†
x

)
is the probability that the first output qubit equals to |1〉.

Remark 4.3.9. The values 2
3

and 1
3

are conventionally chosen. By repeating the

computation and using the amplification of probabilities we can achieve better

probabilities. Important: They have to be chosen constant and cannot be chosen

dependent of n.

Remark 4.3.10. There’s a nice story to keep in mind, which allows to get a

simpler view on this kind of problems. QMA is shorthand for Quantum-Merlin-

Arthur. Merlin plays the part of the all-powerfull wizard that knows everything

and is, of course, able to solve QMA-problems. One day King Arthur asks Merlin

to help him with a QMA-problem and Merlin directly delivers him a proof ρ.

Arthur is not that foolish and he doesn’t trust Merlin at all (“He’s too intelligent

to be loyal”). So Arthur checks if the proof fulfills the quantum verifier. There

are now two things that can happen. If there exists a correct proof, Merlin is

able to convince Arthur of the correctness of his proof with probability 2
3
. If there

doesn’t exist a correct proof, Merlin cannot succeed in convincing Arthur that he

found a correct proof with probability higher than 1
3
.

Finally we need a last important property. This property is connected to the

reduction of problems.

Definition 4.3.8 (Karp reducibility). A predicate F1 is reducible to a predicate

F2 if there exists a function f ∈ P such that F1(x) = F2(f(x)) for any input

string x.

55



4.4 Consistency Problem

This leads to the definition of complete problems.

Definition 4.3.9 (Completeness). A predicate F ∈ NP/QMA is NP/QMA-

complete if any predicate in NP/QMA is reducible to it.

The nice thing of reducibility can be expressed with the following lemma.

Lemma 4.3.2. Let F1 be reducible to F2. Then

• F2 ∈ P ⇒ F1 ∈ P

• F2 ∈ NP ⇒ F1 ∈ NP

• F2 ∈ QMA ⇒ F1 ∈ QMA

This means for example: If we can show that a NP-complete problem is in P (or

is reducible to a problem in P, which is same as this lemma states) we instantly

know that we can reduce every problem in NP to a problem in P and so it would

follow that NP = P.

4.4 Consistency Problem

4.4.1 Formulation of the Problem

The formal physical quantum marginal problem, here called the consistency prob-

lem, is given by:

Problem 2 (Consistency problem). Consider a system of n qubits. We are given

a collection of local density matrices ρ1, . . . , ρm, where each ρi acts on a subset

of qubits Ci ⊆ {1, . . . , n}. Each matrix entry is specified with poly(n) bits of

precision. Also, m ≤ poly(n), and each subset Ci has size |Ci| ≤ k, for some

constant k.

In addition, we are given a real number β (specified with poly(n) bits of precision)

such that β ≥ 1
poly(n)

.

The problem is to distinguish between the following cases:

• There exists an n-qubit state σ such that, for all i, ‖ tr{1,...,n}−Ci(σ)−ρi ‖1=

0. In this case, output “YES”. (F (x) = 1)

• For all n-qubit states σ, there exists some i such that, ‖ tr{1,...,n}−Ci(σ) −
ρi ‖1≥ β. In this case, output “NO”. (F (x) = 0)
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Remark 4.4.1. We are given a marginal distribution and we want to find a

densitiy matrix σ for the whole system that fulfills the given marginal distribution.

If there exists such a σ we say that the marginal distribution is consistent and

output a “YES”. If not we say that the marginal distribution is not consistent

and we output a “NO”.

Theorem 4.4.1 (Main theorem). The Consistency problem for k ≤ 2 is QMA-

complete.

4.4.2 Sketch of the Proof [3]

Two things have to be shown. The first thing is that the consistency problem

itself is in QMA. This can be done by explicitely construct a quantum verifier V

for this problem. The paper by Y.-K. Liu uses the class QMA+, see [2], to

construct such a verifier. QMA+ is an alternative definition of the class QMA.

(In [2] you can find the proof that QMA = QMA+.)

The second part of the proof is to show that every problem in QMA is reducible

to the consistency problem. Figure 4.1 shows a simple diagram of the idea how

this can be done.

Local Hamiltonian Problem

Consistency Problem

QMA

reducible to 

reducible to

Figure 4.1: Any problem in QMA is reducible to the Local Hamiltonian problem.

If we can show, that the Local Hamiltonian problem is reducible to the Consis-

tency problem we immidiately now that every problem in QMA is reducible to

the Consistency problem.

There’s a famous QMA-complete problem called the Local Hamiltonian problem.

It’s sometimes said to be the quantum analogon to the SAT-problem. The formal

definition is the following:
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4.5 Conclusion

Problem 3 (Local Hamiltonian problem). Consider a system of n qubits. We

are given a Hamiltonian H = H1 + · · · + Hm, where each Hi acts on a subset

of qubits Ci ⊆ {1, . . . , n}. The Hi are Hermitian matrices, with eigenvalues in

[0, 1], and each matrix entry is specified with poly(n) bits of precision. Also,

m ≤poly(n), and |Ci| ≤ k for some constant k.

In addition, we are given two real numbers a and b (specified with poly(n) bits

of precision) such that b− a ≤ 1
poly(n)

.

• If H has an eigenvalue that is ≤ a, output “YES”. (F (x) = 1)

• If all the eigenvalues of H are ≥ b, output “NO”. (F (x) = 0)

It has been shown that the Local Hamiltonian problem is QMA-complete for

k = 5 [1, 4], k = 3 [5] and k = 2 [6]. So the idea of the proof is to reduce the

Local Hamiltonian problem to the Consistency problem.

4.5 Conclusion

QMA-complete problems are believed not to be efficiently solveable on quantum

computers. So for us this means that the quantum marginal/consistency problem

is a really complicated problem. It’s the same dilemma as for the NP and P

classes. If anyone would find an algorithm that solves a NP-complete problem in

polynomial time we would have a polynomial algorithm for every problem in NP

(which would be very astonishing). On the other hand it hasn’t been shown yet

that for any NP-complete problem there’s no polynomial algorithm.
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Chapter 5

Entropy Inequalities

Dominik Gresch
supervisor: Christopher Portmann

This chapter is dedicated to introducing and discussing the no-

tion of entropy as defined in Classical and Quantum Information

Theory. In the classical case, we will se that entropy corresponds

to the information content of a system. Also, an intuitive connec-

tion to thermodynamical entropy will be shown. For the quantum

mechanical entropy, our main goal will be understanding which

entropies are allowed on composite systems. We will find two

inequalities which govern entropy on composite systems, strong

subadditivity and weak monotonicity. The question that will be

discussed, then, is whether or not those two inequalities com-

pletely describe entropy on composite systems.

5.1 Shannon entropy

5.1.1 Entropy in Information Theory

An important problem in information theory is compressing the information in-

herent in a system to its minimally needed size. To treat this problem, consider a

list of random variables {X} which assume values xi, i ∈ 1, ..., n with probabilities

pi = Pr[X = xi]. This could be, for example, a text where the different characters

of the alphabet appear seemingly randomly, according to how often they are used

in the English language. When representing this text in a binary form, we would

like to have a shorter representation for the more abundant letters (like ‘e’) while

we don’t mind giving rare letters like ‘z’ a longer binary representation. In this
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5.1 Shannon entropy

way, we need less bits to store the same information than by just representing all

the letters with an equal number of bits.

There is, however, an exact bound to how good we can compress the information

inherent in a list of random variables: No matter how sophisticated our algorithm

is, we need at least

H(X) = −
n∑
i=1

pi log(pi) (5.1)

bits per random variable (where log is the logarithm to base 2 and 0 log 0 := 0).

This quantity is called the Shannon entropy. Since it is always possible to get

arbitrarily close to that value, the Shannon entropy is a good way of measuring

information (in bits). In fact, one can even consider entropy and information as

being the same thing.

5.1.2 Equivalent formulations

As we have just seen, entropy is the information (measured in bits) of a random

variable. Equivalently, we can think about it as the gain of information when

adding a variable, i.e. performing a measurement.

Also, the information gained by measuring a system’s state must be the same

as the uncertainty about that state before measuring it. If we know perfectly

what state a system is in, then measuring it will not give us any information. On

the other hand, measuring a state system with fully unknown state (i.e. we are

uncertain about the state) gives us information about the nature of the state.

We now have three equivalent ways of thinking about entropy: It can be thought

of as the minimal number of bits it takes to store a random variable, the infor-

mation gained by measuring a system’s state or the uncertainty about a state

before measuring it.

5.1.3 Relation to thermodynamical entropy

How does this correspond to the entropy we know from thermodynamics? Let us

consider a system of bosons which may assume energies Ei, i ∈ N0 (see Fig. 5.1).

From thermodynamics, we know that the system can be described as follows at

absolute zero temperature:

“All bosons occupy the ground state.”

Also, the (thermodynamical) entropy must be zero. At finite temperature, how-

ever, the entropy is positive, and the system may be described as follows:
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Figure 5.1: System of bosons that may assume discrete energy levels

“6 bosons occupy the ground state,

3 bosons occupy the state E1

2 bosons occupy the state E2...”

Obviously, describing the more chaotic system at finite temperature takes much

more information. Hence, it makes intuitive sense to identify the Shannon entropy

with what we know from thermodynamics. In fact, a detailed analysis shows that

the entropy from thermodynamics and the Shannon entropy are the same up to a

constant factor. Note however that the reasoning described above is not a strict

formalism and that there might be some pitfalls in trying to apply it to a general

problem.

5.2 von Neumann Entropy

5.2.1 Definition

The quantum mechanical analogous to the Shannon entropy is the von Neu-

mann entropy. We shall define the von Neumann entropy and another useful

quantity called mutual information:

Definition 5.1. Let ρ be a density operator. Then the von Neumann entropy

of the system described by ρ is given by

S(ρ) = − tr(ρ log ρ) (5.2)
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5.2 von Neumann Entropy

If the eigenvalues λx of ρ are known, this can be rewritten as

S(ρ) = −
∑
x

λx log λx (5.3)

where 0 log 0 := 0 as before.

Notation. When considering composite systems (e.g. AB consisting of A and

B), the entropy of the different subsystems is often indexed as follows:

S(A) := S(ρA) S(A,B) := S(ρAB)

Definition 5.2. The mutual information of two systems A and B is given by

S(A : B) := S(A) + S(B)− S(A,B) (5.4)

Mutual information describes the information shared by two systems. Returning

to our example from 5.1.1, if Alice owns “The Lord of the Rings” and “Harry

Potter” and Bob has “The Hobbit” and “The Lord of the Rings” in his bookshelf,

then ”The Lord of the Rings” is the mutual information of Alice and Bob.

5.2.2 Basic properties

A short selection of properties of the von Neumann entropy is shown in the

following theorem:

Theorem 5.1. Basic properties of the von Neumann entropy

a) The von Neumann entropy is non-negative: S(ρ) ≥ 0. It is zero if and only

if the state ρ is pure.

b) Let d be the dimension of the Hilbert space. Then S(ρ) ≤ log d.

c) Suppose a composite system is in a pure state. Then S(A) = S(B)

Proof.

a) ρ is a positive operator with tr ρ = 1. Hence, the eigenvalues λx of ρ fulfil

λx ≥ 0 and
∑

x λx = 1 and thus ∀x : 0 ≤ λx ≤ 1. For the entropy, we get:

S(ρ) = −
∑
x

λx︸︷︷︸
≥0

log λx︸ ︷︷ ︸
≤0

≥ 0

b) see 5.2.3

c) From the Schmidt decomposition we know that ρA and ρB have the same

eigenvalues. With equation 5.3, it follows that S(A) = S(B)
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5.2.3 Relative Entropy

An extremely useful tool for showing properties of the von Neumann entropy is

the relative entropy of two density operators ρ and σ given by

S(ρ‖σ) := tr(ρ log ρ)− tr(ρ log σ) (5.5)

The relative entropy is non-negative, a result known as Klein’s inequality:

Theorem 5.2. Klein’s inequality

The relative entropy is non-negative,

S(ρ‖σ) ≥ 0 (5.6)

with equality if and only if ρ = σ.

Proof. (from [1])

Since ρ and σ are positive operators, there are (by the spectral decomposition

theorem) orthonormal decompositions ρ =
∑

i pi|i〉〈i| and σ =
∑

j qj|j〉〈j|. We

can rewrite the relative entropy as

S(ρ‖σ) =
∑
i

pi log pi −
∑
i

〈i|ρ log σ|i〉

by writing the trace in the basis {|i〉}i.
Into this equation, we substitute 〈i|ρ = pi|i〉 and

〈i| log σ|i〉 = 〈i|

(∑
j

log(qj)|j〉〈j|

)
|i〉 =

∑
j

log(qj)Pij,

where Pij := 〈i|j〉〈j|i〉 to get

S(ρ‖σ) =
∑
i

pi

(
log pi −

∑
j

Pij log qj

)

Pij satisfies Pij ≥ 0,
∑

i Pij = 1 and
∑

j Pij = 1. Using the fact that log is a

strictly concave function, we get
∑

j Pij log qj ≥ log ri where ri :=
∑

j Pijqj, with

equality if and only if there is a j0 such that Pij = δij0 . Note also that
∑

i ri = 1.

Hence we get

S(ρ‖σ) ≥
∑
i

pi log
pi
ri
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with equality if and only if Pij describes a permutation matrix (i.e. the eigenstates

are the same up to permutation). Noting that ln 2 log x = ln x ≤ x − 1 (with

equality if and only if x = 1) and log 1
x

= − log x, we get

S(ρ‖σ) ≥ 1

ln 2

∑
i

pi

(
1− ri

pi

)
=

1

ln 2

∑
i

(pi − ri)

=
1

ln 2
(1− 1) = 0

with equality if and only if ri = pi, i.e. the eigenvalues are the same. In com-

bination with the result above, this shows that equality occurs if and only if

ρ = σ.

Application of Klein’s inequality

With Klein’s inequality, we can show b) from Theorem 5.1 (S(ρ) ≤ log d):

First we note that for σ = I/d, S(σ) = − tr(σ log σ) = − log( 1
d

)

d
tr I︸︷︷︸
=d

= log d,

i.e. σ saturates the inequality.

For a general density operator ρ, we know from Klein’s inequality that S(ρ‖I/d) ≥
0. Since

S(ρ‖I/d) = tr(ρ log ρ)− tr ρ log I/d = −S(ρ) + log d tr ρ︸︷︷︸
=1

we get −S(ρ) + log d ≥ 0⇔ S(ρ) ≤ log d.

5.3 Entropy of composite systems

5.3.1 Strong subadditivity and weak monotonicity

The entropy of composite systems can have properties that do not occur in the

classical case. For example, consider a state ρA with non-zero entropy S(A) > 0.

We know that we can find a system B purifying A, i.e. ρAB is in a pure state.

But then S(A,B) = 0 must hold.

Trying to explain this with our intuition about information fails, because there

appears to be more information in a subsystem of AB than in the hole system.

This strange behaviour leads us to the question what rules govern entropy on

composite systems. In other words:
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What entropies are allowed on composite systems?

The main results concerning this question are known as strong subadditivity

(SSA) and weak monotonicity (WM).

Theorem 5.3. (SSA) and (WM)

Let A,B,C be a trio of quantum systems. Then the following inequalities hold:

S(A,B,C) + S(B) ≤ S(A,B) + S(B,C) (SSA)

S(A) + S(B) ≤ S(A,C) + S(B,C) (WM)

For a proof of this theorem, see [1].

In fact, the two inequalities are equivalent. The proof of their equivalence makes

use of the fact that we can always find a purifying system R s.t. ABCR is in a

pure state:

Proof.

i) WM =⇒ SSA

Applying (WM) on the triplet R,B,C gives us

S(R) + S(B) ≤ S(R,C) + S(B,C)

from Schmidt decomposition, we know that S(A,B,C) = S(R) and S(A,B) =

S(R,C)) and therefore

S(A,B,C) + S(B) ≤ S(A,B) + S(B,C)

which is (SSA).

ii) SSA =⇒ WM

Applying (SSA) on the triplet R,B,C and S(A) = S(C,B,R) and S(B,R) =

S(A,C) (from Schmidt decomposition), we get:

S(A) + S(B) = S(R,B,C)+S(B) ≤ S(B,C)+S(B,R) = S(A,C) + S(B,C)
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5.3.2 Geometrical interpretation

To get an intuition about what (SSA) and (WM) imply in a general n-part

quantum system Ω, we represent a given state by using all the entropies on non-

zero subsystems of Ω. Since there are 2n − 1 such subsystems, this gives us a

vector in R2n−1 called the allocation of entropy.

Definition 5.3. Let Ω = Ω1 × Ω2 × ... × Ωn be a n-part quantum system. For

I ⊆ N := 1, ..., n, denote by ΩI the subsystem given by ΩI =
∏

i∈I Ωi. The

allocation of entropy of a state ρ on Ω is then given by

{S(ΩI)}I⊆N ≡ {S(ρΩI )}I⊆N (5.7)

 

     

     

       

           

Figure 5.2: Example of an allocation of entropy for a two-part quantum system

Since we are interested in what states are physically possible, we would like

to know the shape of the set An := {{S(ΩI)}I⊆N}Ω n-part q.s. of allocations of

entropy on an arbitrary n-part quantum system allowed by the rules of quantum

mechanics.

In particular, we would like to know whether (SSA) and (WM) are all the in-

equalities we need, i.e. if Bn := {x ∈ R2n−1 : x satisfies (SSA) and (WM)} is the

same as An.
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Convex cones

A first result concerning the question whether An and Bn are the same is the fact

that Bn and the closure of An, denoted by An, are both convex cones.

Definition 5.4. Let G be a set of point in Rk. G is called a convex cone if

CC 1 ∀x ∈ G and ∀λ ∈ R, λ ≥ 0 : λx ∈ G

CC 2 ∀x,y ∈ G and ∀λ ∈ R, 0 ≤ λ ≤ 1 : λx + (1− λ)y ∈ G

From (CC 1), we know that if a point x is in a convex cone, then so is the ray

(with origin at 0) passing through that point. (CC 2) on the other hand tells

us that if two points are in a convex cone, then so is the line connecting the

points. Therefore, one can think of a convex set by imagining a convex set on

a (hyper-)plane in Rk. The cone is then given by all the points lying on rays

passing through that set.

Note that, in order for (CC 1) to be fulfilled, it is important that Ω can be

an arbitrary n-part quantum system because the entropy in any given system is

always bounded by log d, where d is the dimension of the corresponding Hilbert

space.

 

Figure 5.3: A polyhedral convex cone in R3. The set given by intersecting it

with a plane (right) must be convex. It is called polyhedral because that set is a

polygon.
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Relation between An and Bn

Since we now know that An and Bn are both convex cones, we will first consider

the question whether An = Bn. The answer to this question depends on the

dimensionality of the system:

For n ≤ 3, it can be shown that the An and Bn are actually equal. Since An is

the image of the set of density operators under S, this means that the allowed

allocations of entropy lie dense in the set described by (SSA) and (WM).

However, there is no proof for the same result for n ≥ 4. In fact, it is believed that

An is actually a strict subset of Bn in that case. The reason for this speculation

is that in the classical analogous, the same is true, i.e. Aclass.n = Bclass.n for n ≤ 3

but Aclass.n ( Bclass.n for n ≥ 4.

5.3.3 Constrained inequalities

The attempt to prove that An ( Bn for n ≥ 4 has lead to the development of

constrained inequalities. These inequalities do not hold in a general case, but

only when a given condition is fulfilled.

Quadripartite quantum systems

Let us consider a four - part quantum system. Although a more generalized

result can be found for n-part quantum systems, its essentials are captured by

this example.

Theorem 5.4. Constrained inequality for a quadripartite quantum sys-

tem

Let A,B,C,D be a four - part quantum system. Suppose the triplets ABC, CAB

and ADB saturate the strong subadditivity, i.e.

S(A,B,C) + S(B) = S(A,B) + S(B,C)

S(A,B,C) + S(A) = S(A,B) + S(A,C)

S(A,B,D) + S(D) = S(A,D) + S(B,D)

Then the following inequality holds:

S(C : D) ≥ S(C : A,B) (5.8)

which can be rewritten as

S(A,B,C) + S(D) ≥ S(C,D) + S(A,B) (5.9)
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For a proof of this theorem, see [2].

It is worth noting that the condition that strong subadditivity must be saturated

means that we are talking about the surface of the convex cone defined by (SSA)

and (WM).

Independence of inequalities

It is not immediately clear that the constrained inequality from above is actually

something new and not a complicated way of rewriting (SSA) or (WM). To show

that this is not the case, we need a notion of independence of inequalities.

Definition 5.5. An inequality (B) is independent of (A) if there is a vector

x ∈ R2n−1 which satisfies (A) but not (B).

This definition does not take into account that the vectors have to represent

physical states. For example, for (SSA) and (WM), which we have shown to be

equivalent, we can show that (SSA) is independent of (WM)

Proposition 5.5. Strong subadditivity is independent of weak monotonicity.

Proof. Suppose we have an n-part quantum system Ω. Consider a vector for

which the entropy on the total system is the only non-zero entropy, i.e.

S(ΩI) =

{
1, if I = N

0, else

Dividing the n-part quantum systems into three non-zero parts A,B,C, we get

S(A,B,C) = 1 and S(B) = S(A,B) = S(B,C) = 0, hence (SSA) is not fulfilled.

For this allocation of entropy, ΩI ⊂ ΩJ ⇒ S(ΩI) ≤ S(ΩJ). Hence, for any

tripartite subsystem A,B,C, we get S(A) ≤ S(A,C) and S(B) ≤ S(B,C), which

shows that (WM) is fulfilled.

The tricky part in this proof is that (WM) actually has to be fulfilled on any

tripartite subsystem of Ω. For example, if Ω is itself tripartite system A,B,C,

then (WM) has to be fulfilled for Ã = (A,B); B̃ = ∅; C̃ = C as well.

With the same type of argument, it can be shown that the constrained inequality

is independent of (SSA) and (WM).
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Conclusion

The fact that the constrained inequalities are independent means that the reason

they hold is not because the inequality is redundant, but it is a physical reason.

Also, this implies that not all points in B4 satisfy the constrained inequality.

However, it does not imply that An ( Bn because of the constraints given:

As pointed out before, the constrained inequality only affects the surface of the

cone Bn. There might therefore still be points in An arbitrarily close to the

surface and An might still be dense in Bn.

Also, this does not imply that An ( An because it is not clear whether the points

in Bn affected by the inequality actually lie in An. What we have shown, then,

is that An ( Bn for n ≥ 4.
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Chapter 6

Entanglement of random states

Felix Bischof
supervisor: Frederic Dupuis

We give a basic introduction into the importance of entangled

states for many-particle quantum physics in general and quantum

information theory in particular. First, the main definitions are

given and basic properties of entangled states explained. Then,

entanglement measures, which serve to quantify the amount of

entanglement in states, are introduced and discussed. In the end,

special emphasis will be put on the analysis of entanglement of

random states in high dimensional bipartite systems, following

the first part of [1].

6.1 Introduction

According to one of the postulates of quantum mechanics, the Hilbert space of a

system composed of two subsystems is given by the tensor product of the Hilbert

spaces of the subsystems. In classical mechanics however, the total configuration

space is the cartesian product of the individual configuration spaces. One of the

fundamental differences of these two postulates is that in the quantum world there

exist so called entangled states which cannot be written as a product of states

of the subsystems. In the classical world this is always possible. This difference

gives rise to pure quantum effects without classical analogue; entangled states

allow to perform non-classical tasks such as quantum dense coding and quantum

teleportation.

In the first part of this chapter we discuss the definition of entangled states and its

relation to entropy. Then, entanglement measures will be introduced which serve
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as an indicator how entangled a state is. After a historic motivation of certain

entanglement measures, we will discuss the axiomatic approach which defines

entanglement measures by two basic axioms. Based on these axioms we will be

able to write down several classes of entanglement measures which will then be

compared and classified via their additional properties. The last and main part

of this chapter will deal with entanglement of random states in high-dimensional

bipartite systems. We will see that there exist large subspaces in which all pure

states are close to maximally entangled. Therefore, (near-maximally) entangled

states play a major role in quantum mechanics.

6.2 Entanglement

6.2.1 Definition

We will start by defining what not-entangled states are. Suppose two finite

dimensional Hilbert spacesHA,HB are given. If we choose two orthonormal bases

{|i〉A ∈ HA}, {|j〉B ∈ HB}, a generic element of the product space HA ⊗HB can

be expressed as |ψ〉AB =
∑

i,j cij|i〉A ⊗ |j〉B. We call this state seperable if and

only if one can find a decomposition cij = ci cj of the complex coefficients into

product form for all pairs (i, j). This, in turn, implies that |ψ〉AB can be written

in product form |ψ〉AB =
(∑

i ci|i〉A
)
⊗
(∑

j cj|j〉B
)

. States for which such a

decomposition does not exist are called entangled. This means that for these

states it is not possible to assign a single state vector to any subsystem.

Example. For dimHA = dimHB = 2, HA ⊗HB is spanned by the four Bell-state

entangled basis

|ψ±〉 =
1√
2

(|0〉|1〉 ± |1〉|0〉) (6.1)

|φ±〉 =
1√
2

(|0〉|0〉 ± |1〉|1〉) . (6.2)

We show as an example that |φ+〉 is entangled. We have that c10 = c01 = 0, which

either implies (if we assume a decomposition to exist) that c0 = 0 or c1 = 0 (or

both). Each of the three possibilities contradicts however that c00 = c11 = 1/
√

2

and therefore |φ+〉 must be entangled. The other cases work similarly.

To extent the above definition to mixed states, one can also define separability

and entanglement in the language of density matrices. A generic density matrix

ρAB acting on HA ⊗HB is called seperable if and only if it can be written as a
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convex combination of product states, i.e.

ρAB =
∑
k

pk ρ
k
A ⊗ ρkB, (6.3)

where the pk form a probability distribution and each ρkA/B acts on A or B,

respectively. Again, a density matrix is called entangled if it is not separable

in the light of the above definition. The language of density matrices provides

the advantage that, in contrast to states, we are able to assign a density matrix

to any subsystem, namely the reduced density matrix of that subsystem. But

for entangled density matrices (which from now on shall also be called states)

something peculiar happens. If we start, say, with the pure entangled state

ρ = |ψ−〉〈ψ−| its reduced density matrix on A or B ρA,B = 1
2

(|0〉〈0|+ |1〉〈1|)
is mixed. This means that although we have maximal knowledge about the

total state (because its pure), the states of the subsystems are unknown. This

property is exclusive for entangled states; one can show that a bipartite pure

state is entangled if and only if all reduced states are mixed.

6.2.2 Entanglement and Entropy

In order to relate to the previous chapter and to reformulate some of the state-

ments of the previous section, it is instructive to discuss the relation between

entanglement and entropy. The von Neumann entropy of a density matrix ρ is

given by S(ρ) = −Tr (ρ log2 ρ). If ρ acts on a finite dimensional Hilbert space

and has eigenvalues λ1, . . . , λn, the Shannon entropy is recovered; by using the

spectral decomposition ρ =
∑

i λi|i〉〈i|, S(ρ) can be computed with respect to the

eigenbasis {|i〉}, leading to S(ρ) = −
∑

i λi log2 λi. Pure states have trivial decom-

position λi = δij and therefore entropy equal to zero (convention: 0 log 0 = 0). In

particular, this applies to ρ = |ψ−〉〈ψ−|, i.e. S(ρ) = 0. However, for the reduced

density matrix ρA = 1
2

(|0〉〈0|+ |1〉〈1|) we have S(ρA) = −2 · 1
2

log2
1
2

= 1 > 0.

This behaviour arises because ρ is pure, whereas its reduced state ρA is maximally

mixed; a property which is unique to entangled states. Therefore, this behaviour

is a pure quantum effect which cannot happen in the classical world. It has been

proved that seperable states, similarly to classical states, satisfy

S(ρAB) ≥ S(ρA), S(ρAB) ≥ S(ρB). (6.4)

For pure states these inequalities are violated if and only if the state is entangled,

since in this case all reduced states are mixed and have therefore entropy greater

than zero. This property and the above discussion motivate that E(ρAB) = S(ρA)

77



6.3 Entanglement measures

(entropy of subsystem) might be a good measure in order to quantify entangle-

ment. In fact, this function will turn out to be the most useful entanglement

measure for pure states in order to discuss entanglement of random states at the

end of this chapter.

6.3 Entanglement measures

According to the above definition of entanglement, a generic state is either en-

tangled or not. However, among the entangled states some are more entangled

than others and it turns out to be useful to quantify the notion of entanglement

by entanglement measures. These are functions which map the space of states

into the real numbers such that the output tells us how entangled a state is. For

instance, in the case of the above example, an entanglement measure can be con-

sistently defined by how many Bell states can be extracted from the state in the

limit of infinite copies of itself. This section provides an overview over various of

such entanglement measures and their (defining) properties.

6.3.1 Quantum Teleportation

The initial idea to quantify entanglement was connected with its usefulness in

terms of communication. In order to understand the connection between en-

tangled states and communication, an interlude about quantum teleportation is

needed. Furthermore, the appearing notions will be of importance for the rest of

this chapter.

Suppose Alice wants to send an unknown quantum bit |ψ〉C = α|0〉C + β|1〉C to

Bob. By the following method she is able to do so at the price of erasing the

state at her side. They have at disposal a classical communication channel and

one pair of entangled qubits i.e. they share a maximally entangled state e.g.

|φ+〉AB =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) . (6.5)

The total initial state is given by the tensor product of the two states

|φ+〉AB ⊗ |ψ〉C , (6.6)
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which can be rewritten as a linear combination of the Bell basis on the system

AC, yielding

|φ+〉AB ⊗ |ψ〉C =
1√
2

(|0〉A|0〉B + |1〉A|1〉B) (α|0〉C + β|1〉C) (6.7)

=
1

2

[
|φ+〉AC (α|0〉B + β|1〉B) + |φ−〉AC (α|0〉B − β|1〉B) (6.8)

+ |ψ+〉AC (β|0〉B + α|1〉B) + |ψ−〉AC (β|0〉B − α|1〉B)
]
. (6.9)

If Alice now measures her system AC, the total state collapses into eigenstates of

the measurement result, in this case into one of the four Bell states times a certain

qubit with equal probability. The resulting state on Bob’s side is very similar

to the original qubit |ψ〉C = α|0〉C + β|1〉C which Alice wanted to send him. In

fact, the four possible states are related to |ψ〉C by unitary representations, in

this case rotations. To get the desired qubit, Bob has to apply the corresponding

inverse rotation to his state, for which he needs to know Alice measurement result.

For this reason, Alice sends her result to Bob in binary form using the classical

communication channel. The four possibilities are

a) |φ+〉AC ⊗ (α|0〉B + β|1〉B)
to Bob−−−→ 00

b) |φ−〉AC ⊗ (α|0〉B − β|1〉B)
to Bob−−−→ 01

c) |ψ+〉AC ⊗ (β|0〉B + α|1〉B)
to Bob−−−→ 10

d) |ψ−〉AC ⊗ (β|0〉B − α|1〉B)
to Bob−−−→ 11.

According to the received bits, Bob performs unitary operations on his qubit to

get the desired state, e.g. if he receives 11, he can obtain |ψ〉C from his state

by applying U = −iσ2 =

(
0 −1

1 0

)
to it. In this way, Alice is able to send

her qubit to Bob at the price of simultaneously erasing it at her side. This is

because she ends up with one of the four Bell states and no information about the

initial qubit is left with her. Therefore the procedure, although only information

and no matter is transferred, is a teleportation rather than duplication of the

initial qubit. In this way, the no cloning principle is respected. In summary,

two qubits in one of the Bell states (which are also called ebit) together with

local operations (either on Alice’s or Bob’s side) and classical communication i.e.

LOCC operations allow for the teleportation of one qubit.

It is crucial for the whole process to use one of the Bell states, which will later turn

out to be maximally entangled states, rather than generic entangled states. Non-

maximally entangled states do not allow for faithful communication. However, in

the limit of infinite copies of an entangled state, faithful communication might me
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achieved at some rate. This rate is exactly the output value of the entanglement

measure Distillable entanglement

ED(ρAB) = sup
{m
n

: lim
n→∞

(
inf

ΛLOCC
‖Λ
(
ρ⊗nAB

)
− (Φ+

2 )⊗mn‖1

)
= 0
}
. (6.10)

The input is a generic bipartite state ρAB. The output tells how many ebits can be

extracted from n copies of ρAB per copy by LOCC operations in the limit n→∞.

Because of the teleportation process, this is equal to the number of qubits per

copy one is able to teleport with this state i.e. its usefulness for communication.

Evidently, ED = 0 for seperable states and ED = 1 for Bell states.

Another measure, dual to ED, is Entanglement cost. It counts the number of ebits

per copy which are needed in order to create ρ⊗nAB by LOCC operations. Again,

by the teleportation procedure, the output is equal to the number of qubits one

has to teleport in order to create the state. Its precise definition is

EC(ρAB) = inf
{m
n

: lim
n→∞

(
inf

ΛLOCC
‖ρ⊗nAB − Λ

(
(Φ+

2 )⊗mn
)
‖1

)
= 0
}
. (6.11)

It can be shown that generally ED ≤ EC i.e. more qubits are needed to build up

a state than can be extracted from it. Furthermore equality ED = EC holds on

pure states.

6.4 Axiomatic approach

The above measures describe entanglement in terms of certain tasks (optimisation

of protocols). A more general approach consists of postulating a set of axioms

which are fulfilled by the above measures, but allow any function to be a measure,

provided it satisfies the axioms. The most important axiom is

• Axiom 1 (Monotonicity under LOCC):

∀ LOCC operations Λ, an entanglement measure E(ρ) hast to satisfy

E (Λ (ρ)) ≤ E (ρ) ,

i.e. entanglement can only decrease under LOCC. This postulate has two imme-

diate consequences which one would expect from an entanglement measure and

therefore motivate the axiom. First, a measure E(ρ) satisfying axiom 1 is con-

stant on separable states. This is because every separable state can be mapped

to any other by LOCC operations. Since the LOCC set is closed under inversion

we get equality. Even more, E(ρ) must be minimal on separable states, since

any separable state can be obtained by LOCC from any other state. Since by

80



Entanglement of random states [Felix Bischof]

definition separable states are not entangled, it is natural to set this constant

to zero. This is however not a consequence of axiom 1 and must therefore be

required as an additional axiom.

• Axiom 2 (Minimal entanglement):

An entanglement measure E(ρ) has to satisfy

E(ρsep) = 0.

Note, that both axioms impose E to be a non-negative function.

In addition to minimal entanglement, imposed by both axioms, it can be shown

that there exists maximal entanglement in bipartite systems. More precisely,

in a finite dimensional bipartite system H = Cd ⊗ Cd (d = d′ for simplic-

ity) the following holds: ∀|ψ〉 ∈ H ∃ΛLOCC such that |ψ〉 = Λ(|φ+
d 〉) with

|φ+
d 〉 = 1√

d

∑
i |i〉A|i〉B, i.e. one can get any state by applying the appropri-

ate LOCC operation to |φ+
d 〉 (the d-dimensional generalisation of |φ+〉). Since

entanglement can only decrease under LOCC, |φ+
d 〉 has to be maximally entan-

gled. This property is not exclusive to |φ+
d 〉. In fact, it can be shown that all

maximal entangled states can be obtained from |φ+
d 〉 via unitary tranformations

|ψmax〉 = UA ⊗ UB|φ+
d 〉. Since unitary transformations are a subspace of LOCC

transformations, every state can be obtained by any maximally entangled state

by applying LOCC.

Entanglement measures often satisfy a stronger condition than axiom 1, namely

they do not increase on average i.e.∑
i

piE(σi) ≤ E(ρ), with ρ
LOCC−−−−→

∑
i

piσi. (6.12)

Later on, stronger monotonicity (6.12) will be needed in order to classify all

bipartite entanglement measures.

6.4.1 Additional possible postulates

The above axioms are the only ones necessarily required from entanglement mea-

sures. However, there are other properties which can be useful and are natural

in some context. Examples include

1. Normalisation. In bipartite systems, a natural postulate in order to com-

pare entanglement measures is normalisation on maximally entangled states.

For instance, one could require

E(φ+
d ) = log d,
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a property which is fulfilled by ED and EC . For multipartite systems, there

is generally no such natural condition due to the non-existance of maximally

entangled states.

2. Asympotic continuity. In the asymptotic limit of infinite copies of one state,

it turns out to be useful to require the following form of continuity. Suppose

ρn, σn act on Hn with dimension dn, then asymtotic continuity requires

if ‖ρn − σn‖1 → 0 ⇒ |E(ρn)− E(σn)|
log dn

→ 0.

Note, that for finite dimensional Hilbert spaces asymptotic continuity is

equivalent to regular continuity, but gets modified for n → ∞. Later on,

asymtotic continuity will be needed to obtain a unique measure of entan-

glement for pure states.

3. Convexity. Most of the known entanglement measures are convex, i.e. sat-

isfy for t ∈ [0, 1]

E (tρ+ (1− t)σ) ≤ tE(ρ) + (1− t)E(σ).

6.4.2 Classes of entanglement measures

As examples for functions build up to satisfy both entanglement axioms, we will

show two classes of entanglement measures, containing two of the most important

measures. More examples can be found in [2].

Entanglement measures based on distance

A class of entanglement measures are based on the natural intuition, that the

closer the state is to the set of separable states, the less entangled it is. A more

general approach consists of minimising distance to a generic set S which is closed

under LOCC operations. Let D be a metric on S(H). Then

ED,S(ρ) = inf
σ∈S
D(ρ, σ)

satisfies axiom 1 if D is monotonous under all operations T , i.e. D(ρ, σ) ≥
D(T (ρ), T (σ)). If S is chosen to be the set of separable states, axiom 2 is also

satisfied. The most important measure in this class is relative entropy of entan-

glement

ER = inf
σ∈SEP

Trρ (log ρ− log σ) .
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Convex roof measures

Here, one starts with a strong monotonous entanglement measure E|pure defined

on pure states. It is then extended to mixed states by convex roof

E(ρ) = inf
∑
i

piE(ψi),
∑
i

pi = 1, pi ≥ 0,

where the infimum is taken over all ensembles {pi, ψi} for which ρ =
∑

i pi|ψi〉〈ψi|.
The infimum is reached on a particular ensemble which is called optimal. It

has been shown that convex roof measures satisfy stronger monotonicity and

axiom 2, if one starts with a strong monotonous entanglement measure on pure

states as required above. Furthermore, one can check that E(ρ) is convex. The

most important measure in this class is entanglement of formation EF , being the

convex roof extension of entropy of subsystem

E(ρAB)|pure = S(ρA).

This construction has the advantage that statements solely proven for pure states

can sometimes easily be extended to mixed states. Because ot this reason and

the fact that one can make strong statements about entropy in high dimensional

bipartite systems, we will use EF as entanglement measure for the remainder of

this chapter.

There are various other (classes of) entanglement measures with useful properties

in specific contexts, lots of which are desribed in [2].

6.4.3 All measures for pure bipartite states

Now, that we have seen examples of entanglement measures and discussed useful

additional properties, it is natural to wonder whether these entanglement mea-

sures, looking very different at first sight, can be written in a unified way. This

is related to the construction of new measures and to the question whether one

can build up measures from functions which properties are easier veryfiable than

monotonicity. In fact, these question can be answered in the case of pure bipar-

tite states. Let E(ρAB) be a strong monotonous entanglement measure. Then E

can be written on pure states as

E(ρAB)|pure = f(ρA), for some f satisfying

(i) f(λ1, . . . , λk, 0, . . . , 0) symmetric, expansible

(ii) f is concave in ρ.
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Expansibility means, that one can forget about the zero eigenvalues, i.e.

f(λ1, . . . , λk, 0, . . . , 0) = f(λ1, . . . , λk). In this way, all possible entanglement

measures for pure states are characterised. Conversely, if one starts withE(ρAB) =

f(ρA), where f satisfies (i) and (ii), one can construct an entanglement measure

by convex roof extension. Therefore, we see that entanglement of formation EF
with f = S, satisfying (i) and (ii), has a natural form in this context.

6.4.4 Asymptotic case, uniqueness

Although all entanglement measures for pure states can be characterised in a

unified way, they might have very different behaviour. For instance, one can show

that entanglement measures generally impose different orderings, i.e. for two

measures E,E ′ there can exist states ρ, σ with E(ρ) ≥ E(σ), but E ′(ρ) < E ′(σ).

Since in the rest of this chapter we will work with a very specific entanglement

measure EF , it is natural to ask whether the proven properties can be transfered

to other measures. Therefore, it is good to know that for measures with certain

properties, including EF , there is a unique entanglement measure and we can

work with EF without loss of too much generality.

In the asypmtotic limit, where one considers the limiting case of infinite copies

of one system, entanglement measures have to be regularised in order to be well

defined. The regularisation of any function f is defined as

f∞(ρ) = lim
n→∞

1

n
f(ρ⊗n), (6.13)

if the limit exists. Regularised entanglement measures have the nice property that

they are proportional to the number of copies of a state, i.e. E∞(ρ⊗n) = nE∞(ρ).

It turns out, that if a function E is regularisable, monotonous under LOCC,

asymptotically continuous and satisfies E(ψ+
d ) = log d, then we have

ED ≤ E∞ ≤ EC . (6.14)

Because of ED = EC on pure states, this in particular implies that all measures

with the above properties are the same on pure states. In this sense, one can

say that for pure states regularisation of any entanglement measure is equal to

entropy of subsystem S(ρA), i.e. we have a unique entanglement measure.

6.5 Entanglement of random states

Up to now, we have discussed the basic notion of entanglement and how one

can consistently define functions which measure the amount of entanglement in
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a state. However, it is natural to wonder whether entangled states play an im-

portant part in nature and how much entanglement one can typically expect.

We shall see, that surprisingly in bipartite systems, if the dimension is chosen

large enough, nearly all states are near-maximally entangled. To be more precise,

randomly drawn states are extremely likely to have near-maximal entanglement,

in fact, so likely that, with high probability, a random subspace of dimension

close to the total dimension contains only near-maximally entangled states. This

will turn out to be a consequence of the ”concentration of measure” phenomenon,

meaning that with large probability, certain parameters of randomly chosen states

are close to their expectation.

Notation. First, we will collect the conventions and general assumptions used

throughout the following part. The Hilbert space of the high dimensional bipar-

tite system under consideration will be denoted by H = A⊗ B, where A and B

have dimension dA ≤ dB, respectively. Density matrices on H will be denoted

by ϕ and can be, unless otherwise stated, mixed or pure. Pure states ϕ = |ϕ〉〈ϕ|
will be associated with the ket |ϕ〉. The expectation value of a random variable

X will be denoted by EX. Finally, we will use entanglement of formation as

entanglement measure, i.e.

E(ϕ) = EF (ϕ) = min
ϕ=

∑
i pi|ϕi〉〈ϕi|

∑
i

piS(ϕiA),

which on pure states is simply entropy of subsystem

EF (|ϕ〉) = S(ϕA). (6.15)

Since we will often mention near-maximal entanglement, we will now calculate

the maximal possible entanglement in the system. We know, that |φ+
dA
〉 =

1√
dA

∑
i |i〉|i〉 is a maximally entangled state. By calculating the matrix repre-

sentation of its orthogonal projector φ+
dA

= |φ+
dA
〉〈φ+

dA
| with respect to the basis

|i〉|j〉 and taking the partial trace, one ends up with (φ+
dA

)A =̂ 1
dA
1. Therefore, we

see that (φ+
dA

)A has dA times the eigenvalue 1/dA and can calculate its entropy

by using the formula from part 1.2.2. The maximal entanglement in our system

is hence S( 1
dA
1) = log dA.

6.5.1 Random states and subspaces

The statements, that we will proof in the following, are based on the assump-

tion that states are drawn uniformly at random from the large bipartite system

H = A⊗ B. The fact, that for pure states there is a unique ”uniform” distribu-

tion that is unitarily invariant allows us to define a precise prescription of what
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we mean by ”random state”. It is induced by the Haar measure on the unitary

group, which is a generalisation of the Lebesgue measure to locally compact topo-

logical groups.

Definition 1 (random state)

A random pure state ϕ is any random variable distributed according to the unique

unitarily invariant probability measure on the pure states P(H) of H. We for-

mally express this by writing ϕ ∈R P(H).

Furthermore, we will also need to draw subspaces of a certain dimension uni-

formly at random, which can be defined similarly.

Definition 2 (random subspace)

A random subspace S of dimension s is any random variable distributed according

to the unitarily invariant measure on the s-dimensional subspaces of H, denoted

by Gs(H). We express this using the notation S ∈R Gs(H).

An analogous definition for mixed states is not possible, since unitary invariance

in this case does not uniquely specify a probability measure. Instead, one can use

the unitarily invariant measure on pure states to induce a probability measure

on mixed states by partial tracing, see [1].

With the above definitions, one is able to demonstrate that the expectation value

of entanglement ES(ϕA) in our system is bounded below in the following way.

Lemma 1 (Near-maximal expectation value of entanglement)

Let |ϕ〉 ∈R P(A⊗B) be chosen uniformly at random. For dA ≤ dB, we have

ES(ϕA) > log dA −
1

2
β, β =

1

ln 2

dA
dB
.

Because of dA ≤ dB, the function β(dA, dB) does not grow for dA → ∞ and is

at most of the order of magnitude 100. Therefore, for dA large enough, the term

proportional to β is negligible and the expectation value of entanglement is only

slightly less than the maximal possible value log dA.

6.5.2 Concentration of measure

Every ”slowly varying” function on the unit sphere Sk, interpreted as as a random

variable induced by the sphere’s uniform measure, will take values close to the

average except for a set of volume exponentially small in k. This is the basic

statement of Levy’s Lemma, which rigorously formalises the above. It describes

a phenomenon of concentration of function values for functions on Sk, if the
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dimension is chosen large enough. Since normalised states (”kets”) are elements of

the unit sphere of a certain dimension, Levy’s Lemma can be applied to functions

acting on physical states. In fact, applied to the special case of entanglement

measure, it will turn out to be the crucial theorem in order to prove all following

statements.

To put it more formally, we observe that the unit sphere is isomorphic to the

set of normalised pure states Sk ' P(A ⊗ B) if their dimensions agree. Since

A ⊗ B has 2dAdB real dimensions and the normalisation condition removes one

real degree of freedom, we have to require k = 2dAdB − 1. We then are able to

apply Levy’s Lemma, which reads as

Lemma 2 (Levy’s Lemma)

Let f : Sk → R be a function with Lipschitz constant η = max|∇f(X)|. Let

X ∈R Sk be chosen uniformly at random. For α ≥ 0, we have

Pr {|f(X)− Ef | ≥ α} ≤ 2 exp
(
−C1(k + 1)α2/η2

)
,

with an absolute real constant C1 > 0, which may be chosen as C1 = (9π3 ln 2)−1.

This means, that the probability that f deviates from its expectation value more

than by α is upper bounded by the term on the right side. If f is slowly vary-

ing, i.e. η2 grows slower with dA than k, and α is fixed, the right expression

approaches zero if dA and thus k is chosen large enough. Therefore, under the

above conditions, it is very likely that f is close to its expectation if dA is large

enough.

We are going to apply Levy’s Lemma to entanglement E of a random state

|ϕ〉 ∈R A ⊗ B, i.e. we fix f(|ϕ〉) = S(ϕA). In order to ensure that f is slowly

varying, it is possible to show that the Lipschitz constant η of S(ϕA) is upper

bounded by
√

8 log dA, if dA ≥ 3. The combination of both Lemmas then imme-

diatly implies the first theorem; Lemma 1 states that the expectation value of

entanglement S(ϕA) is near-maximal. Lemma 2 states that it is very likely that

S(ϕA) does not deviate very much from its expectation value. We can therefore

conclude

Theorem 1 (Concentration of entropy)

Let |ϕ〉 ∈R P(A⊗B) be a random state on A⊗B, with dB ≥ dA ≥ 3. Then

Pr {S(ϕA) < log dA − α− β} ≤ exp
(
−(dAdB − 1)C2α

2

(log dA)2

)
,

where β(dA, dB) is the same as in Lemma 1 and C2 = (8π2 ln 2)−1.
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Because of (dAdB > d2
A)/(log dA)2 →∞ for dA →∞, the expression on the right

is negligible for fixed α, if dA is large. Since log dA � β for dA → ∞ and α can

be chosen small, we conclude: with very high probability, a random pure state is

almost maximally entangled, if dA is large enough.

6.5.3 Maximally entangled subspaces

The goal of this section is to put together the insights from the previous section

to make an even ”stronger” statement than Theorem 1; we show that a randomly

chosen large subspace of P(A ⊗ B) with appropriate dimension, will with high

probability contain only near-maximally entangled states. A further necessary

tool in order to prove the theorem is a specifically constructed ”small” net in

state space.

Lemma 3 (Existance of small nets)

For 0 < ε < 1 and dimH = d there exists a subset of pure states N ⊂ H with

|N | ≤ (5/ε)2d such that:

∀|ϕ〉 ∈ H ∃|ϕ̃〉 ∈ N with ‖|ϕ〉 − |ϕ̃〉‖2 ≤ ε/2 and ‖ϕ− ϕ̃‖1 ≤ ε. (We call such a

set an ε-net.)

This means, that the ε-net is constructed in such a way, that for any pure state

in our system we are able to find an element of the net which is at most ε ”away”,

i.e. is contained in the ball of radius ε around the state. Now, we are able to

formulate and prove the main theorem.

Theorem 2 (Entangled subspaces)

Consider quantum systems A,B with dimensions dB ≥ dA ≥ 3. Let 0 < α <

log dA. Then, there exists a subspace S ⊂ A⊗B of dimension

s =

⌊
dAdB

Γα2.5

(log dA)2.5

⌋
such that all |ϕ〉 ∈ S have entanglement at least

E(ϕ) = S(ϕA) ≥ log dA − α− β,

with β as in Lemma 1 and an absolute constant Γ = 1/1753. The probability

that a random subspace of dimension s will not have this property, i.e. there is

at least one state with less entanglement, is bounded above by(
15 log dA

α

)2s

exp

(
− (dAdB − 1)α2

32π2 ln 2 (log dA)2

)
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Proof: Let S ⊂R A ⊗ B be a random subspace of P(A ⊗ B) of dimension s.

Let NS be an ε-net on S, where we choose ε to be ε = α/(
√

8 log dA). Given

|ϕ〉 ∈ S, we can find |ϕ̃〉 ∈ NS such that ‖|ϕ〉 − |ϕ̃〉‖2 ≤ ε/2. We then estimate

the difference in entanglement of |ϕ〉 and |ϕ̃〉

|S(ϕA)− S(ϕ̃A)| ≤ ε

2
· η ≤ α

2
√

8 log dA
·
√

8 log dA =
α

2
, (6.16)

where in the second inequality we used the Lipschitz estimate for S(ϕA) from

before, as well as the explicit choice of ε. By using Theorem 1, we are now able

to estimate

Pr

{
inf
|ϕ〉∈S

S(ϕA) < log dA − α− β
}
≤ Pr

{
min
|ϕ̃〉∈NS

S(ϕ̃A) < log dA −
α

2
− β

}
≤ |NS|Pr

{
S(ϕA) < log dA −

α

2
− β

}
≤
(

15 log dA
α

)2s

exp

(
− (dAdB − 1)α2

32π2 ln 2 (log dA)2

)
.

In the first line, we went from a generic pure state to the closest element of the

net, thereby changing the upper bound by using (1.16). Since the net is a finite

set, the infimum becomes a minimum. In the second line, we did a basic estimate

following from the axioms of probability theory, to show that the probability that

the least entangled states has entanglement less than log dA − α/2 − β is upper

bounded by the size of the net times the probability that a randomly chosen state

has entanglement less than log dA−α/2−β. In the third line, we inserted the size

of the net according to Lemma 3 and used Theorem 1 to estimate the probability

factor. Our previous analysis of the large dA-behaviour of the right factor of the

final bound is valid here as well. Additionaly, we see that in the limit dA → ∞,

the right factor goes faster to zero than the left factor to infinity and therefore

the whole expression to zero. Hence, we conclude that the probability to find an

element of S with entanglement less than log dA − α/2 − β becomes negligible

if we choose dA large enough. Note, on the other hand, that the dimension s of

the subspace is in the large dA-limit comparable to the total dimension dAdB,

i.e. random subspaces with the previous property can be considered large. In

summary, we can conclude that for high-dimensional bipartite systems random

subspaces of appropriate (large) dimension are very likely to contain only near-

maximally entangled pure states. Because of the convex roof construction of our

entanglement measure EF , a similar statement follows for generic mixed states

as a corollary, see [1].
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6.6 Conclusion

6.6 Conclusion

We have seen, that the transition from classical configuration space to quantum

Hilbert space gives rise to a new class of states in the description of composite

systems. These entangled states are the source of non-classical phenomenon and

a requirement for performing non-classical tasks such as quantum teleportation.

Furthermore, we discussed measures which quantify the amount of entanglement

in a state; we have seen, what properties are required from these measures, which

properties are desirable in certain contexts and answered questions of unificated

description and uniqueness. At last, we have seen that the concentration of mea-

sure phenomenon in high dimensional bipartite systems has the implication that

random physical states are extremely likely to have near-maximal entanglement.

Therefore, entangled states play a major role in the description of quantum sys-

tems.
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Chapter 7

Transporting information by

destroying correlations

Ilario Giordanelli
supervisor: Frederic Dupuis

7.1 Introduction

The aim of this work is to illustrate communication over noisy channels. The

focus of the first part will be on classical communication theory, whereas in the

following part attention will be spent to explain quantum communication. This

will be done making use of one important property of quantum mechanics, which

allows to find, given any reduced density matrix, a pure state on a larger Hilbert

space compatible with it. Basically, to do this, the so-called purification theory

will be applied to quantum communication. This will eventually allow the reader

to understand the meaning of transporting information by destroying correlations.

7.2 Classical communication over noisy chan-

nels

The transfer of information is in reality always related to a certain degree of noise.

For example, almost everybody has encountered in his daily life some troubles

in communicating with someone on the opposite side of a telephone line. In the

specific case, it is due to some kind of interference occurring along the connection

line. This kind of interference, better known as ”noise”, is basically present to

different extents in every information processing system. As a result, to cope
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7.2 Classical communication over noisy channels

with this problem, several error-correcting codes have been developed to allow a

reliable communication and computation in spite of the presence of severe noise.

Given a particular noisy communication channel N an interesting question is

how much information can be transmitted reliably through that channel. Figure

7.1 depicts the scheme of a typical classical communication channel. In our

example, let’s assume that Alice wants to send the message m from a message

set [M ] = {1, ...,M} to her friend Bob. In this model, an encoder E will create

for each m a binary sequence of n bits xn = (x1, ..., xn), which will pass through

a noisy channel, denoted in the figure as N . Finally a decoder D will be required

to decode the codeword yn = (y1, ..., yn) that corresponds to the output of the

channel and to create the message m̂ that will be received by Bob. In this case, the

communication will be successful if Bob’s message is the same as Alice’s message,

suggesting that the encoder/decoder pair was able to transmit the information

through the noisy channel.

Figure 7.1: The classical channel code

To obtain a successful decoder/encoder pair, a larger number of bits needs to

be produced than one would need if there would be no noise in the system.

Let’s go back to Alice and Bob’s situation. In this case, the message set has

M elements. The smallest binary representation of this set would be dlog2(M)e.
However, the encoder will create a binary string with n elements that are more

than dlog2(M)e bits to allow the decoder to filter out the noise. At this point,

to define the performance of communication scheme, it is necessary to introduce

the so-called rate, which relates the message bits log2(M) with the n bits created

by the decoder. This is defined as

Rate R =
number of message bits

number of channel uses
=

log2(M)

n
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Let’s assume that for a channel there are 12 different uses to transmit 6 bits of in-

formation (a message set with 64 elements) using an appropriate encoder/decoder

pair. In this case the code will have a rate of R = 6
12

= 1
2
.

One fundamental problem in information theory is the determination of the max-

imum rate for reliable communication through n uses of the channel. The max-

imum rate is defined as the capacity of the channel. For classical noisy com-

munication channels the capacity of the channel can be inferred by using the

so-called Shannon’s noisy channel coding theorem. To better understand the ap-

plication of this theorem, some preliminary concepts will be presented in the next

paragraphs.

7.2.1 Shannon entropy

The Shannon entropy theorem is fundamental to define the amount of information

in an object. Therefore it can be seen as the basis of all concepts developed in

quantum information theory.

Mathematical definition

H(X) = −
n∑
i=1

p(xi) log2 p(xi)

where X is a random variable (a source), which takes possible value {x1, .., xn}
with probability {p(x1), ..., p(xn)}. As can be seen from this equation, the Shan-

non entropy is nothing else than the information content of X or, in other words,

a measure of the lack of information about X.

Figure 7.2: Different entropies for two random variables X and Y.
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7.2 Classical communication over noisy channels

Examples

• n possible values sharing all the same probability p(xi) = 1
n
:

H(X) = −
n∑
i=1

1

n
log2

1

n
= log2 n

• for a binary variable with two values: 1 with probability p and 0 with

probability 1-p. The binary entropy function H(p) is

H(p) = −p log2 p− (1− p)log2(1− p)

• Conditional entropy H(X|Y ) is defined by

H(X|Y ) = −
∑
y

p(y)
∑
x

p(x|y) log2 p(x|y) = −
∑
y

∑
x

p(x, y) log2 p(x|y)

where p(y)p(x|y) = p(x, y). It is a measure of what Y is not saying about

X. The relation H(X|Y ) = H(X, Y ) − H(Y ) holds (can be seen grafigcly

in figure 7.2), where H(X, Y ) is the information content of X and Y.

• Mutual Information is a measure of how much X and Y contain information

about each other and is defined by

I(X : Y ) = −
∑
x

∑
y

p(x, y)log2p(x : y)

where p(x : y) = p(x)p(y)
p(x,y)

is the mutual probability.

7.2.2 Classical capacity of a noisy channel

The Shannon’s noisy channel coding theorem describes the capacity of a memory-

less channel. This theorem owns his name to the mathematician Claude Shannon,

who has developed it in 1948 by using techniques that were not common at that

time. The ”capacity” of a channel can be seen as the maximal possible amount

of data that can be sent through that channel, while ”memoryless” means that

the channel acts in the exact same way for every use, i.e. the uses of each channel

are completely independent. For this reason, it is typical to draw in the commu-

nication scheme n equal channels instead of n uses of the same channel. Figure

3 illustrates the basic idea behind the Shannon’s noisy channel coding theorem.

Going back to Alice and Bob’s example, in the first stage one of 2nR possible

messages M is produced by Alice and is encoded using a map

E : {1, ..., 2nR} −→ X n
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Figure 7.3: The noisy coding problem for classical messages. The channel changes

the binary signal X to Y with a certain probability.

which assigns to each of Alice’s possible messages an input. This is then sent

through n uses of the channel to Bob, who decodes the channel output using a

map

D : Yn −→ {1, ..., 2nR}

which assigns a message to each string for each possible output from the channel.

In priciple all messages may have different probabilities to be changed through the

communication line. For a given encoding and decoding pair, the error probability

is defined as

Pre(En,Dn) = max
m∈M

Pr(m 6= m̂)

where m̂ is the message at the output.

A rate R is said to be achievable if there is such a sequence of encoding/decoding

pairs (En,Dn) so that Pre(En,Dn) −→ 0 as n −→ ∞. The capacity C(N ) of a

given noisy channel N is defined to be the supremum over all achievable rates

for the channel.

C(N ) = sup{R|R achievable}

Shannon noisy channel coding theorem

For a noisy channel N the capacity is given by

C(N ) = max
p(x)

I(X : Y )

where the maximum is taken over all input distributions p(x) for X, for one use

of the channel. Y is the corresponding induced random variable at the output of

the channel.

From the above description, it is well apparent that the Shannon’s noisy channel

coding theorem dramatically simplifies the calculation of capacity, reducing it

to a simple and well-defined optimization problem that can be solved exactly in

many cases.
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classical bit-flip channel

In this section the bit-flip channel will be considered in the classical and quantum

mechanical context. This is a rather simple case, which is nevertheless very useful

to illustrate the basic concept of a noisy channel coding. The bit-flip channel is a

noisy communication channel for a single bit of information, whose main function

lies in flipping the bit being transmitted with probability p > 0, while the bit is

transmitted without error with probability 1 − p. The effect of this channel is

shown in figure 7.4.

Figure 7.4: The effect of noise for a single bit

Using error-correcting codes it is possible to transmit information through this

channel.

Let’s now assume that every input bit of the channel has a fixed probability

distribution of q for 0 and 1− q for 1 and that every message from the message

set gets from the encoder E a codeword xn = (x1, ..., xn). It is assumed that the

codeword (0, ..., 0) = c0 will be sent through the bit-flip channel. The channel

will then flip np bits of the codeword c0 resulting in a new codeword that contains

with high probability np ones and (1−p)n zeros (under the assumption of large n).

As can be seen from Figure 5, the most probable output messages will necessarily

lie on the surface of a sphere with radius np, called the Hamming sphere.

Thus, the elements of the message set can be graphically represented has a Ham-

ming sphere containing 2nH(p) elements (Figure 6). Recalling the definition of

the rate it is therefore possible to write M = 2nR, which implies - according to

theorem of typical sequences - that the space where all spheres lie is about the

size of 2nH(Y ).

Requiring no or just a small overlap between the Hamming spheres, will result

in the condition:

M2nH(p) < 2nH(Y )

which can be reformulated to

R < H(Y )−H(p)
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Figure 7.5: Hamming sphere

Figure 7.6: Hamming spheres in the typical output space

H(p) is related with the flipping probability of the channel and is typically speci-

fied by the error probability p of the channel. Since the capacity of the channel is

given by the highest achievable rate, the right-hand part of the equation should

be as large as possible, leading to a higher value for R. As the Shannon entropy

H(Y) for the random variable Y depends from the a priori distribution (q, 1−q),
it is fundamental to find a value for q so that H(Y) is maximal. A simple cal-

culation shows that this is achieved by using the uniform a priori distribution

corresponding to q = 1
2
, for which H(Y) = 1. This means that it is possible to

achieve the rate R for any R less than 1−H(p). However, for any R higher than

1 − H(p), the Hamming spheres start to overlap too much making impossible -

no matter how the codewords were chosen - the determination of codeword that

was sent. Thus

1−H(p) =: C(N )
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is the capacity of the bit-flip channel. In the case the Hamming spheres do not

overlap, it is rather easy to decode the output of the channel. In our example,

Bob will simply check whether the output is in one of the Hamming spheres

and, if so, output the corresponding codeword. Otherwise the message will be

discharged and Alice has to resend the message.

By applying the Shannon’s noisy channel coding theorem for the bit-flip channel

it is now possible to show that the same expression for the capacity of the channel

will be obtained.

According to the Shannon’s noisy channel coding theorem the capacity is given

over the maximum of all mutual entropies I(X : Y ), therefore

I(X : Y ) = H(Y )−H(Y |X) = H(Y )−
∑
x

p(x)H(Y |X = x)

But for each x, H(Y |X = x) = H(p) so

I(X : Y ) = H(Y )−H(p)

which is maximized by choosing q = 1
2
, so H(Y ) = 1 and therefore the capacity

is

C(N ) = 1−H(p)

as already shown before. For further information on classical and quantum Shan-

non Theory see [1].

7.3 The purified quantum theory

In the following part the focus will move from the classical to the quantum infor-

mation theory. To better understand this, it is necessary to introduce some basic

tools that will be used along the chapter. Let’s start first with the purification of

a system. The lack of information about a set of quantum states can be seen as

resulting from entanglement with another system, which is inaccessible. Making

use of this inaccessible system it is possible to purify the set of quantum states

leading to a pure state in a bigger system.

The Bell state |Φ+ >AR, which is known to be a maximally entangled state, can

be used as an example. This state is a pure state on the joint system of Alice A

and a reference system R, but the local state in Alice system is the maximally

mixed state ΠA = I
2
. Purification can be interpreted by thinking that Alice state

ΠA arises from the entanglement of her system with the reference system R. (See

also [2])
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7.3.1 Purification theorem

Suppose a density operator ρA on a system A is given, which is rising from the

ensemble {pX(x), |x >}. As mentioned above, connected to Alice’s system there

is a reference system R (Figure 7). A purification of ρA is a pure bipartite state

|ψ >RA with the property that the reduced state on system A is equal to

ρA = TrR{|ψ >< ψ|RA}

Figure 7.7: The pure state |ψ >RA is the purification of the state ρA

It is important to note that for any density operator a purification on a joint

system with the reference system R will exist. One possible realisation of a

purification could be, for example

|ψ >RA=
∑
x

√
pX(x)|x >R |x >A

where the set {|x >R}x of vectors are some set of orthonormal vectors for the

reference system R.

7.3.2 Theorem of unitary equivalence of purifications

LetH(A) andH(E) be Hilbert spaces and suppose that |φ >, |ψ >∈ H(A)⊗H(E)

satisfies

TrE(|φ >< φ|AE) = TrE(|ψ >< ψ|AE)

Then there exists a unitary operator U such that |ψ >AE= (1A⊗U)|φ >AE. This

operator (1A ⊗ U) leaves the states in H(A) unchanged and changes only the

states in the environment H(E).

7.3.3 Isometric extension of a general noisy quantum

channel

Until now it has been shown how to purify a density matrix. A similar idea

will be applied to purify noisy channels. Let NA→B denote a noisy quantum
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channel, where this notation implies the quantum system A as an input and

the quantum system B as an output. The purification of this channel is called

isometric extension denoted by UA→BE
N , where an additional environment system

E comes into play (Figure 8).

Figure 7.8: Isometric extension of a channel NA→B

By ignoring the additional environment E, the noisy channel NA→B will result.

An isometry will therefore possess the following two properties:

• By tracing out the environment system, it produces the evolution of the

noisy quantum channel NA→B:

TrE{UA→BE
N (ρ)} = NA→B(ρ)

where ρ is any density operator input to the channel NA→B

• It is analogous to a rectangular matrix that behaves somehow like a unitary

operator with the two properties:

U †NUN = IA

UNU
†
N = ΠBE

Isometric extension of a bit-flip channel

The bit-flip channel works in a similar way to the bit-flip channel in classical

communication theory. Basically, the channel flips a qubit with a probability of

p and leaves it unchanged with the corresponding probability (1−q). The matrix

representation of this operation is given by the Pauli matrix:

X =

[
0 1

1 0

]
When a qubit system A in the state |ψ > is used as an input for this type of

channel, the ensemble corresponding to the state at the output has the form:

{{1− p, |ψ >}, {p,X|ψ >}}
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and the density operator of the resulting state is

ρA = (1− p)|ψ >< ψ|+ pX|ψ >< ψ|X†

One possible representation of the purification of ρA is:√
1− p|ψ >A |0 >E +

√
pX|ψ >A |1 >E

The above map is an isometric extension of the bit-flip channel, that can be

rewritten as

UA→AE : |ψ >A−→
√

1− p|ψ >A |0 >E +
√
pX|ψ >A |1 >E

An isometry is very similar to a unitary operator with the sole difference that

it maps states on one input system to states on a joint system. The matrix

representation of the bit flip isometry is given by:

UA→AE =


√

1− p 0

0
√
p

0
√

1− p
√
p 0


For p 6= 0, i.e. when noise is present in the channel, there is entanglement of the

input system with the environment E. By tracing out the environment E, it is

possible to obtain the noisy evolution of the input system and, similarly, tracing

out Bob’s system, to obtain the information reaching the environment E. This

will be the topic of the next subsection.

Complementary Channel

Coming back to the the example of Alice and Bob, some quantum information

can be transferred from Alice’s system to the environment E. As already pointed

out before, it is possible to get the output of environment from the quantum

channel simply by tracing out every system except the environment itself. The

map from the sender to the environment is defined as a complementary channel.

Tracing out A from the isometric extension of the bit-flip channel, one could

compute that the environment receives the following density operator

TrA{(
√

1− p|ψ >A |0 >E +
√
pX|ψ >A |1 >E)(

√
1− p < ψ|A < 0|E+

√
p|X† < ψ|A < 1|E)}

= ... = (1−p)|0 >< 0|E+
√
p(1− p)2Re(α∗β)(|1 >< 0|E+|0 >< 1|E)+p|1 >< 1|E
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assuming that the qubit has the form |ψ >= α|0 > +β|1 >.

If the noise parameter assume the two extreme values of p = 0 or p = 1, the

environment receive no quantum information at all about the state |ψ > trans-

mitted down the channel, because the state in E does not contain the probability

amplitudes α or β. As a result, the channel is fully devoid of noise, which means

that the channel does not leak quantum information to the environment. On

the other hand, when 0 < p < 1, the environment receives some probability

amplitudes α or β, which can be interpreted as ”stealing” information from A.

Interestingly, when p = 1
2
, the environment gets most information about the state

|ψ >, because
√
p(1− p) reaches a maximum.

7.4 Quantum information theory

7.4.1 Quantum entropy

The basic concepts of quantum information theory have been initially developed

by von Neumann in the early 20th century, when he introduced the concept of

entropy, later called Neumann entropy in his honour, which is defined as

H(X)ρ = −Tr(ρxlog2(ρx))

X is the quantum source that produces pure states |Ψ1 >, ...|Ψm > with probabil-

ity p1, .., pm, whereas ρx is the density matrix of that source. The Neumann en-

tropy represents the degree of uncertainty contained in ρx. When |Ψ1 >, ...|Ψm >

are mutually orthogonal, then ρ is diagonal and the Shannon entropy is equal

to the Neumann entropy. Generally the density matrix is not diagonal and the

quantum entropy is smaller then the classical one. Assumed a pure state, then

the density matrix has only off-diagonal elements and the Neumann entropy is

therefore 0.

7.4.2 Coherent Information of a quantum channel

Generally a noisy channel manipulates the pure state at the input and changes its

correlation to the reference system. To quantify the ability of a quantum channel

to preserve correlation, it is necessary to make use of the coherent information of

a noisy channel.

In the example of Alice and Bob, the sender purifies the state to φAA
′

and inputs

the A′ system to a quantum channel NA′→B. This transmission leads to a noisy

state ρAB at the output where

ρAB = NA′→B(φAA
′
)
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Figure 7.9: Scheme illustrates the coherent information

The coherent information of the state ρAB is given by

I(A > B)ρ = H(B)ρ −H(AB)ρ

The coherent information Q(N ) of a quantum channel is the maximum of the

coherent information over all input states

Q(N ) = max
ΦAA′

I(A > B)σ

The coherent information can be shown to be a good lower bound on the rate at

which Alice transmit quantum information to Bob and, in some special cases, it

is even the capacity of a quantum channel.

7.4.3 The quantum capacity theorem

The quantum capacity can be interpreted in a similar way to the classical capacity,

since it is impossible to transmit more qubits per channel use than the capacity of

the channel allows. The capacity of a quantum channel NA−→B is the supremum

over all achievable rates for quantum communication

sup{Q|Q achievable} = C(N )

where Q is the coherent information which is a lower bound for the rate.

It is fundamental to remember that so far the corresponding of the Shannon’s

coding theorem in classical communication does not exist in quantum communi-

cation, which would allow to compute the capacity of every possible channel in

a straightforward way. However, it is possible to compute the capacity in some

special cases. The general treatment of the quantum capacity goes however far

beyond the scope of the present project.
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Figure 7.10: Quantum coding scheme for entanglement transmission

7.4.4 Information processing task

Figure 7.10 illustrates a possible coding scheme, where Alice purifies her system

with a reference system R that she cannot have access to. Then she encodes her

system using an encoder E and transmits the data over many independent uses

of a noisy quantum channel N . On the other side, Bob performs some decoding

D to get the original qubit. During the whole process, Alice tries to keep the

entanglement with the reference system R to be able to transmit her qubit to

Bob. Briefly, to goal of this system is to devise a quantum coding scheme so that

Alice can transfer this entanglement to Bob. Let’s have a more formal look to

how Alice’s purified state |ϕ >RA1 evolves during the process.

As already said, Alice performs some encoder on system A1 to prepare it for

sending an input to many instances of a quantum channel NA′→B. The resulting

states are

EA1→A′n(ϕRA1)

These states are transmitted through many independent uses of the channel,

resulting in the following states

(NA′→B)⊗n(EA1→A′n(ϕRA1))

Once Bob receives these states he will perform some decoupling map D leading

to a state in space B1, which has the same dimensionality of A1. The final state

will be

wRB1 = DBn→B1((NA′→B)⊗n(EA1→A′n(ϕRA1)))

If the protocol is optimal for the quantum communication, the following condition

should be fulfilled for all states |ϕ >RA1

‖ϕRA1 − wRB1‖1 ≤ ε

106



Transporting information by destroying correlations [Ilario
Giordanelli]

In analogy to classical communication theory, the rate Q of this scheme is equal

to the number of qubits transmitted per channel use

Q =
1

n
log dA1 + δ

where dA1 is the dimension of the space A1 and δ is an arbitrarily small positive

number.

7.4.5 The no-cloning theorem

The no-cloning theorem has some of the most profound consequences in quantum

theory, despite of its simplicity. Basically, it states that it is impossible to build

a universal copier of quantum states.

In the classical view, one could do a copy of the original message and compare

the output of the decoder with the copy of the original message. The no-cloning

theorem does not allow this procedure. The only way to evaluate whether a

message has been changed during the transmission, would be to rely on a reference

system, which is entangled with the initial message. Notably, comparing both

density matrices is the wrong approach to prove that the message at the decoder

is the same as the original message, because the density matrix contains only

probability distributions of the ensemble and different states can share the same

density matrix. In other words, the density matrix is not unique and comparing

both density matrices is not a sufficient condition for having equal states.

7.5 Realisation of quantum communication us-

ing the decoupling theorem

The previous section has clearly pointed out that there is a need to correlate the

message states with a reference system R in order to transmit qubits. Again,

this will be done using the purification theory. The pure state |φMR > is the

purification of ρM .

Similarly, an isometric extension of channels is performed to to purify channels.

The resulting environment states from these purified n channels are given by the

space E⊗n.

The information that is not needed at the decoder will be stored in ED, which is

the purification of the decoder. The final representation of such a communication

model is depicted in figure 7.11.

To create the communication protocol the following procedure must be followed.

First of all, the states in (1) have to be by construction in the state φRM̂ ⊗
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Figure 7.11: Communication scheme

ψEDE⊗n , because it is necessary that the message state at the output is in a

product state with the different environments. However, this implies that R is

decorrelated to E⊗n. As a result, the reference system R and the environment

of the channels are not allowed to to be entangled together. Moreover, both the

reference system R and the environment are purifications and therefore the state

in (1) is a purification of R and E⊗n. For the states in (2) let assume a general

pure state with the mathematical representation ϕRB⊗nE⊗n . Now the decoder has

no possibilities to act neither on the reference system R nor on the environment.

Since in (1) R and E⊗n are purifications and the decoder cannot influence both

states, they have to be purifications in (2) as well.

Having now purifications of R and E⊗n in (1) and (2), it would be helpful to use

the theorem of unitary equivalence of purifications. This theorem states that it is

possible to obtain a map from the states in (2) to the states in (1). This mapping

can be written mathematically as

(1R ⊗ 1⊗nE ⊗ U)

One can interpret U as the mapping of the decoder D. This is the decoder for

this problem.
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The problem to find an appropriate communication protocol has been reduced to

simply require that E⊗n and R are decorrelated in (2). To do this, the decoupling

theorem can be successfully applied.

7.5.1 Decoupling theorem

Figure 7.12: This figure shows the channel used in the decoupling theorem

Let WM→A⊗n be an partial isometry and the channel be an isometric extension

UA→EB
τ shown in figure 7.12. The blue and green areas represent the mapping

NA→B and τA→E, respectively. The output of each channel is

|w >A′EB= (Uτ ⊗ 1A′)|φ >AA′

where A and A′ are systems of equal dimension.

Then, for every δ > 0 there is an n0 so that for all n ≥ n0 there is a map W

‖τ⊗n(WρMR′W
†)− w⊗nE ⊗ ρR‖1 ≤

√
dM2−n(I(A′>B)w−δ)

The complete proof of the theorem can be found on [3].The encoder will be repre-

sented mathematically byW , which means that it transforms ρMR′ toWρMR′(W )†

corresponding to an evolution of a density matrix.

The equation above will imply that as long as the right-hand side of the equation

is small enough, R and E⊗n are in a product state w⊗nE ⊗ ρR, i.e. they are

decoupled. From what has been presented before, it is now clear that for a

decoupled R and E⊗n there will be a decoder for Bob.

Let’s have a closer look to the right-hand side of the equation and let log2 dM = m

be the size of the message in number of qubits. The expression 2m−n(I(A′>B)w−δ)

makes clear that, as long as

m ≤ nI(A′ > B)w

the left-hand side of the equation is smaller and therefore the decoder will exist.

As a result, one could see I(A′ > B)w as an achievable rate for the channel
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7.6 Conclusion

because a protocol to send I(A′ > B)w qubits per use of the channel has been

successfully construed.

7.6 Conclusion

During this project, it has been shown that, in the classical world, the Shannon’s

theorem reflects an upper bound for the achievable rate. In quantum communi-

cation theory there is no counterpart for this theorem available at the moment.

Thus, the highest achievable rate must be necessarily found by constructing a

communication protocol. This has been extensively shown ”at work” by using

the decoupling theorem. One could interpret this finding as a way to transmit

information by destroying correlations between R and E⊗n. Finally, it has been

demonstrated that

I(A′ > B)w

is an achievable rate for the communication protocol drawn in figure 7.11.

If a counterpart for the shannon’s theorem in the quantum world will be found

in the future is still an open question.
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Chapter 8

Thermal Equilibrium via

Entanglement

Tileman Conring
supervisor: Johan Aaberg

In this chapter we consider an approach to explain thermal equi-

librium. In this approach we take a “big” universe in a pure

quantum state, and look at a small subsystem. We prove that a

randomly chosen global state with high probability is close to an

equilibrium state on the small subsystem.

8.1 Introduction

A crucial question in standard statistical mechanics is about the role of entropy

and probabilities, which can both be interpreted as some kind of ignorance. In

quantum mechanics a subsystem can be totally mixed even though the total state

of the universe is pure. This observation has been the starting point for several

approaches to explain thermal equilibrium states. In the following I am going

to present an approach taken by Sandru Popescu, Anthony Short and Andreas

Winter in the papers [1], [2] and [3]. A different approach can be studied in [4]

and [5].

Firstly I will introduce some basic results of standard statistical mechanics written

with density matrices. This will help to see similarities between the standard and

the quantum mechanical approach later. This will lead to three principles, which

conclude in a theorem. We prove this theorem in the main part of this chapter,

and conclude with some remarks.
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8.2 Connection between standard statistical mechanics and quantum mechanics

8.2 Connection between standard statistical

mechanics and quantum mechanics

In standard statistical mechanics a commonly used picture is that of a small

system connected to a big reservoir. Usually the following three assumptions are

made:

• the states are a priori equally probable

• the interactions between the system and the environment are small

• the environment has an appropriate spacing of the energy levels

Using these assumptions the well known ensembles are derived. It is also possible,

as shown in the last chapter of the “Theorie der Waerme” script [6] to write these

ensembles with density matrices. To see some similarities later, I will briefly give

a repetition of these results. Let |m〉 be a orthonormal basis of dimension dm and

denote the inverse temperature with β = 1
kbT

. The microcanonical ensemble with

constant number of particles, constant volume and constant energy, which can

be interpreted as an ensemble of isolated systems, can be expressed as follows

Ωµc
S =

∑
m |m〉 〈m|
dm

=
11

dm
. (8.1)

The canonical ensemble is an ensemble of systems connected to a large heat

reservoir, so that it has a well defined temperature and is in equilibrium with the

heat bath. This can be written in the following way:

Ωc
S =

∑
m e
−βEm |m〉 〈m|∑
n e
−βEn

=
e−βH

Tr(e−βH)
. (8.2)

In standard statistical mechanics a crucial question is about the role of probabil-

ities and entropy, which can both be interpreted as some kind of ignorance. Now

think of the universe being in a pure quantum state |φ〉. This means that there

is no lack of knowledge and thus the entropy must be zero.

In the following we take a commonly used approach and only take a look at a

small part, called the “ system”. As mentioned in the talk about entanglement

by Felix Bischof, when there is entanglement between the system and the en-

vironment, locally the entropy is greater than zero. Here we use entropy as a

measure of entanglement.

The aim of this chapter is to show that thermal equilibrium, here used equiv-

alently to canonical state, is a generic property of pure states of the universe.
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We will work on a Hilbert space HR with dimension dR, which is a subspace of

HU =⊆ HS ⊗HE with respective dimensions dU , dS, and dE. The Hilbert space

HR is a subspace determined by arbitrary global constraints (e.g. the total energy

is constant). One assumption in standard statistical mechanics is that there are

equal a priori probabilities for each state. Following from that, the universe is in

an equiprobable state ER = 11R
dR

with respect to the arbitrary global constraint R.

A visualisation of the allowed states is given in figure 8.1. This state is the max-

imally mixed state on subspace HR and therefore also the state with maximum

entropy. To derive from this state the canonical state of the system, correspond-

ing to the restriction R, we have to trace out the environment: ΩS = TrEER. It

is important to note that this must not necessarily coincide the usual thermal

canonical state.

As mentioned earlier, the universe is in a pure state |φ〉, which is chosen randomly

according to the uniform Haar measure. Out of this pure state would result a

reduced state of the system ρS = TrE |φ〉 〈φ|. The aim is now to show that for

almost every pure state of the universe (where there is no lack of knowledge) the

system behaves as if the universe was actually in the equiprobable mixed state

ER (which represents a subjective lack of knowledge about its state). This is

equivalent to

ρS ≈ ΩS . (8.3)

This results in three principles, which we later will redefine by a theorem and

prove.

General Canonical Principle. Given a sufficiently small subsystem of the uni-

verse, almost every pure state of the universe is such that the subsystem is ap-

proximately in the canonical state ΩS.

If we now take into account what we know about the canonical state of the system,

we could reformulate the general canonical principle in the following way:

Principle of Apparently Equal a priori Probability. For almost every pure

state of the universe, the state of a sufficiently small subsystem is approximately

the same as if the universe were in the equiprobable state ER. In other words,

almost every pure state of the universe is locally (i.e. on the system) indistin-

guishable from ER.

As the theorem is quite abstract, the following third principle is useful to give

some intuition for results of the theorem, which we are going to prove.
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Thermal Canonical Principle. Given that the total energy of the universe is

approximately E, interactions between the system and the rest of the universe

are weak, and that the energy spectrum of the universe is sufficiently dense and

uniform, almost every pure state of the universe is such that the state of the

system alone is approximately equal to the thermal canonical state e−βHS , with

temperature T (corresponding to the energy E).

8.3 Thermal equilibrium via Entanglement

Theorem 1. For a randomly chosen state according to the uniform Haar measure

|φ〉 ∈ HR ⊆ HS⊗HE and arbitrary ε > 0, the distance between the reduced density

matrix of the system ρS = Tr|φ〉 〈φ| and the canonical state ΩS = TrER is given

probabilistically by

Prob[‖ρS − ΩS‖1 ≥ η] ≤ η′ , (8.4)

where

η = ε+

√
dS
deff
E

, (8.5)

η′ = 2 exp(−CdRε2) . (8.6)

In these expressions, C is a positive constant (given by C = (18π3)−1), dS and

dR are the dimensions of HS and HR respectively, and deff
E is a measure of the

effective size of the environment, given by

deff
E =

1

TrΩ2
E

≥ dR
dS

, (8.7)

where ΩE = TrsER. Both η and η′ will be small quantities, and thus the state

will be close to the canonical state with high probability, whenever deffE � dS (i.e.

the effective dimension of the enviroment is much larger than that of the system)

and dRε
2 � 1 � ε. This latter condition can be ensured when dR � 1 (i.e. the

total accessible space is large), by choosing ε = d
−1/3
R .

This is the mathematical formulation of the three principles mentioned in section

8.2 which states that thermal equilibrium is achieved for almost all states. Before

we turn to the proof, I would like to point out two interesting properties of this

theorem:

• it has an exponentially small bound on the relative volume of the excep-

tional state, which means that it is a rare event to find the system in a state

far from the canonical state
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Figure 8.1: A schematic picture of the state space with the environment on

the horizontal axis and the system on the vertical axis. The shaded region ER
represents the allowed states of the universe and the functions along the axes

represent the number of configurations in ER consistent with a given configuration

of E or S.

• the exponential of the probabilistic bound scales ∝ dR and the deviation ε

scales ∝ dS
deff
E

In the theorem an effective dimension of the environment deff
E is used. Picture

8.1 provides some intuition in this regard. Basically it can be interpreted as just

looking at the more probable states.

Before coming to the proof of theorem 1 two more technicalities need to be

introduced.

8.3.1 Distance measures

In the proof two different norms are used as a measure of distance. The first is

the trace norm

‖M‖1 = Tr|M | = Tr
√
M †M = sup

‖O‖≤1

Tr(MO) . (8.8)

As it is easier to manipulate, also the Hilber-Schmidt norm will be used, which

is defined as follows:

‖M‖2 =
√
Tr(M †M) . (8.9)

There exists also a useful relation between these to norms, stated in the following

lemma.

Lemma 1. For any n× n matrix M, ‖M‖1 ≤
√
n ‖M‖2.
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Figure 8.2: A visualisation of the statement of Levy’s Lemma for d = 2. In

this case the surface of a sphere is just a normal sphere and the shaded region

corresponds to the region where the function is more than ε greater than the

mean. This area reduces exponentially with growing dimension.

8.3.2 Levy’s Lemma

As the main part of the proof will be the application of Levy’s Lemma, this

paragraph provides a short introduction. The basic statement of Levy’s Lemma is

that for a randomly chosen point according to the Haar measure on a hypersphere

with high dimension and not too rapidly varying function f(φ) then f(φ) ≈ 〈f〉
with high probability. Here the 〈·〉 denotes the ensemble average according to the

Haar measure. This lemma is kind of a generalisation of the law of large numbers

for functions. Some more details about it can be found in chapter three of [7]

and a proof is demonstrated in [8]. A graphical demonstration is shown in figure

8.2.

Levy’s Lemma 1. Given a function f : Sd → R defined on the d-dimensional

hypersphere Sd, and a point φ ∈ Sd chosen uniformly at random according to the

Haar measure,

Prob [|f(φ)− 〈f〉| ≥ ε] ≤ exp

(
−2C(d+ 1)ε2

η2

)
, (8.10)

where η is the Lipschitz constant of f, given by η = sup|5 f |, and C is a positive

constant (which can be taken to be C = (18π3)−1).

We will now turn to the proof of Theroem 1. There are different ways of proving

this theorem. One quite technical way is by applying Levy’s Lemma directly to

the trace norm ‖ρS −ΩS‖1. The second way, which I think is more intuitive and
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descriptive, is by applying Levy’s Lemma to the expectation values. The idea

behind this proof is that if the expectation values of all observables on two states

are close to each other, then the states themselves must be close.

We now consider the expectation values of a complete set of observables and

choose an arbitrary OS on S with the only condition that it must be bounded.

Our aim is to show that the difference between all these observables on the re-

duced state ρS and the canonical state ΩS is small. The reduced state is the state

obtained by tracing out the environment of the according to the Haar measure

randomly chosen state |φ〉.

Proof. We let f in (8.10) be f(φ) = Tr(OSρS). It is quite easy to show that for

any finite operator on HR holds

η ≤ 2 ‖OS‖ . (8.11)

Due to normalisation we loose one dimension and can choose in formula (8.10)

d = 2dR − 1 . (8.12)

Plugging these things into formula (8.10), it becomes:

Prob [|Tr(OSρS)− 〈Tr(OSρS)〉| ≥ ε] ≤ 2exp

(
−CdRε2

‖OS‖2

)
. (8.13)

Due to the linearity of the trace we can take the average over all states inside the

trace

〈Tr(OSρS)〉 = Tr(OS〈ρS〉) . (8.14)

In a next step we compute the Haar measure, which results in the totally mixed

state ∫
HR

|φ〉 〈φ| dφ =
11

dR
. (8.15)

By tracing out the environment in equation (8.15) we see that the average over

all states for ρS is the canonical state ΩS

〈ρS〉 = TrE

(
11

dR

)
= ΩS . (8.16)

Plugging the result (8.16) back into equation (8.14) we have

〈Tr(OSρS)〉 = Tr(OSΩS) . (8.17)
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Using these results and choosing ε = d
− 1

3
R equation (8.13) becomes:

Prob
[
|Tr(OSρS)− Tr(OSΩS)| ≥ d

− 1
3

R

]
≤ 2exp

(
− Cd

1
3
R

‖OS‖2

)
. (8.18)

As the last equation shows, for dR � 1 the expectation values will be close to

each other and following from that a randomly chosen state will be close to the

canonical state with high probability.

But as the expectation values for all the operators must be close to each other, we

now consider a complete basis of d2
S unitary operators Ux

S , where x ∈ {0, 1, ..., d2
S−

1}. They form a complete orthogonal operator basis for HS by satisfying

Tr(Ux†
S U

y
S) = dSδxy . (8.19)

Due to unitarity they also fullfill ‖Ux
S‖ = 1. We now choose OS = Ux

S . Equation

(8.18) becomes

Prob
[
|Tr(Ux

SρS)− Tr(Ux
SΩS)| ≥ d

− 1
3

R

]
≤ 2exp

(
−Cd

1
3
R

)
∀x . (8.20)

This equation could be rearranged if we now just look at one of the d2
S choices of

the unitary operators Ux
S

Prob
[
∃x : |Tr(Ux

SρS)− Tr(Ux
SΩS)| ≥ d

− 1
3

R

]
≤ 2d2

Sexp
(
−Cd

1
3
R

)
. (8.21)

In the last part of the proof, we are deriving a probabilistic bound on ‖ρS−Ωs‖1.

As Ux
S is a complete basis, both states could be expanded

ρS =
1

dS

∑
x

Tr(Ux†
S ρS)Ux

S =
1

dS

∑
x

Tr(Ux
SρS)∗Ux

S (8.22)

=
1

dS

∑
x

Cx(ρS)Ux
S , (8.23)

ΩS =
1

dS

∑
x

Tr(Ux†
S ΩS)Ux

S =
1

dS

∑
x

Tr(Ux
SΩS)∗Ux

S (8.24)

=
1

dS

∑
x

Cx(ΩS)Ux
S . (8.25)

Using these two results in equation (8.20) leads to

Prob [∃x : |Cx(ρS)− Cx(ΩS)| ≥ ε] ≤ 2 d2
S exp

(
−CdRε2

)
. (8.26)

We now would like to derive an upper bound for the distance between the two

expansion coefficients. Therefore we require |Cx(ρS) − Cx(ΩS)| < ε ∀x. As
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mentioned in section 8.3.1 the Hilbert-Schmidt norm is more easy to manipulate

and so we will now make use of it.

‖ρS − ΩS‖2
2 = ‖ 1

dS

∑
x

(Cx(ρS)− Cx(ΩS))Ux
S‖2

2 (8.27)

=
1

d2
S

Tr

(∑
x

(Cx(ρS)− Cx(ΩS))2 (Ux†
S U

x
S)

)
(8.28)

=
1

dS

∑
x

(Cx(ρS)− Cx(ΩS))2 ≤ dSε
2 . (8.29)

Using here the relation between the trace norm and the Hilbert Schmidt norm

explained in Lemma 1 we get:

‖ρS − ΩS‖1 ≤
√
dS‖ρS − ΩS‖2 ≤ dSε . (8.30)

Taking equation (8.26) and plugging this upper bound in, which is valid for all

x, we obtain

Prob [‖ρS − ΩS‖1 ≥ dSε] ≤ 2d2
Sexp

(
−CdRε2

)
. (8.31)

We now would like to have dSε small and the exponent CdRε
2 big in order of the

bound to be small. Therefore we choose ε =
(
dS
dR

) 1
3

and define β =
(
dR
d2
S

) 1
3
. With

these abbreviations equation (8.31) looks like:

Prob

[
‖ρS − ΩS‖1 ≥

1

β

]
≤ 2d2

Sexp (−Cβ) . (8.32)

The difference between the two states in (8.32) is going to be small with high

probability whenever the dimensions fullfill:

β � log2(dS)� 1 , (8.33)

dR � d2
S . (8.34)

The constraints on the dimensions in equation (8.33) and (8.34) look quite similar

to the ones from Theorem 1 but are slightly weaker. The reason for this difference

is found in the way we made the proof. The stronger bounds originate by directly

applying Levy’s Lemma to the distance between the two states, and not the

expectation values.

There are ways to make the theorem even stronger as shown in [1]. They suggest

the following improvements. If you for example take a closer look at deff
E it is

clear that it may be too small due to large eigenvalues of ΩE. These could be

eliminated by projecting onto a typical subspace. Another improvement could

be made by thinking about HS and asking the question if the system occupies it

completly. Both of these improvements would give rise to stronger bounds.

121



8.4 Conclusion

8.4 Conclusion

The main result of this chapter has been a theroem, which shows that the reduced

state on a small subsystem of a randomly chosen global pure state, is close to

the canonical state with high probability. This tells us that the averages used in

standard statistical mechanics are not necessary. We could obtain the same state

of the system by taking the approach of the Principle of apparently equal a priori

probabilities. This states that almost every pure state of the universe is locally

indistinguishable from the canonical state. In the theorem we have assumed

that the global pure state is restricted to a subspace HR, corresponding to some

restriction R. The nature of this restriction is left completly open, and generaliyes

the assumption of constant total energy in standard statistical mechanics.

Perhaps you are left wondering why my topic was called thermal equilibrium via

entanglement, while I never really said anything about entanglement. Building on

the theory of previous chapters, entropy can be seen as a measure of entanglement.

The upper bound of the entropy was obtained by the equiprobable state or in

other words the totally mixed state ER. The following short calculation where we

denote by λi the i-th eigenvalue of the density matrix and use the von-Neumann

entropy shows this property.

S(ρ) = −Tr(ρS log2(ρS) (8.35)

= −
∑
i

λi log2(λi) (8.36)

= log2(dS) . (8.37)

As shown, the maximal entropy is proportional to the logarithm of the dimension

of the system. This explains the choice of name of this chapter.
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Chapter 9

Approaching thermal

equilibrium

Selim Kangeldi
supervisor: Joseph Merrill Renes

How a system reaches thermal equilibrium and under which cir-

cumstances this will happen is still today an open question. De-

spite considerable progress can not derive this from basic dynam-

ical laws. First we address on the problem of equilibration. We

show, that a large system always equilibrate if we use the concept

of realistic observables, say that the Hamiltonian has a generic

character and throw away degrees of freedom. Next we show,

that a system which is coupled to a much large bath will equili-

brate even if we do not use the concept of realistic observables.

If we have additionally the weak coupling condition, the energy

distribution in a small interval and an exponentially density of

states we have thermalization.

9.1 Introduction

Note added: This talk is based on the following references [1, 2, 3, 4, 5, 6].

Imagine a hot cup of coffee and a cold beer at room temperature. What happens?

It is clear that the hot cup of coffee cools down and the cold beer gets warmer.

We all know this from our observations in nature and this is called reaching ther-

mal equilibrium.

From macroscopic point of view we know that a coffee, which reached thermal

equilibrium, does not suddenly get hotter.
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But how can wee explain this phenomenon from a microscopic point of view, from

the basic dynamical laws of nature such as Newtons or Schrodingers equation.

That the coffee in thermal equilibrium not suddenly gets hotter is not obvious.

For example in quantum mechanics I can have a state, which evolves with time,

and the evolution backwards is also valid.

For example by replacing t by t the time evolution backwards does not violate

quantum mechanics. But if the coffee suddenly gets hotter, so in other words the

time evolution backwards, this would violate the thermodynamic laws, because

the Entropy would get smaller.

We need a rough definition of thermalization and equilibration to continue. Equi-

libration means that the ensemble approaches a stationary long time behavior.

Thermalization means that the ensemble exhibits a sharply peaked energy distri-

bution. Thermalization is characterized by equilibration, Initial state indepen-

dence and the Boltzmann form of the equilibrium state, also called the Gibbs

state.

Today it is still an open question to theoretically explain the phenomenon equi-

libration and thermalization. The main idea is to make some restrictions to ob-

servables and to the Hamiltonian and throw away degrees of freedom. Throwing

away degrees of freedom means for example that we do not distinguish two states

when on a microscopic level we can see differences between two states, even if

on a macroscopic point of view and with observables we cannot distinguish those

two states. And with this we can explain those phenomena.
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9.2 Equilibration for an isolated system

9.2.1 General Framework

Consider an isolated system, which incorporates all relevant parts of the envi-

ronment such as thermal baths, reservoirs and so on. We say that the system is

macroscopic large and has a finite number of particles. So we have 1 << f <∞,

where f are the degrees of freedom.

So we write the Hamiltonian

H =
∑
n

En|n >< n|, (9.1)

where |n > are the eigenvecrots of the corresponding eigenvalues En. According

to standard quantum mechanics, the state of the system is at any time t given

by a density operator ρ(t).

The time evolution can be written as ρ(t) = Utρ(0)Ut with the unitary propagator

Ut = e
−iHt

~ =
∑
n

e
−iEnt

~ |n >< n|. (9.2)

The matrix element can be easy found by ρmn =< m|ρ(t)|n >. This leads to the

following important result:

ρ(t) =
∑
mn

ρmn(0)e
−i(Em−En)t

~ |m >< n| (9.3)

We also introduce level population as

pn = Tr{|n >< n|ρ(t)} = ρ(t) = ρnn(0). (9.4)

In other words we can say pn is the expectation value of the observable |n >< n|.
Similarly to pn, we define the ensemble aberaged occupation probability of an

energy eigenvalue En as

pEn = Tr{PEnρ(t)} =
∑

Em=En

ρmm(t) =
∑

Em=En

pn, (9.5)

where PEn is the projector to the corresponding energy subspace.

The normalization condition says us that

1 = Trρ(t) =
∑
n

ρnn(t) =
∑
n

pn =
∑
En

PEn . (9.6)
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We introduce here the sub-Hilbert space H+ ⊂ H spanned by those vectors for

which we have a finite probability to occur. This leads to the definition

H+ = span{|n > |pEn>0}. (9.7)

We say that P+ is the projector into this subspace. And from now on we use the

ρ+(t) = P+ρ(t)P+

Now, an observable is always represented by hermitian operators. The expecta-

tion value is < A > (t) = Tr{ρ(t)A} = Tr{ρ(t)A+} according to the sub-Hilbert

space, where A+ = P+AP+ is the projection of A onto H+. So we see that just

the sub-Hilbert space matters and from now on we replace H, A and ρ(t) by H+,

A+ and ρ+(t).

9.2.2 The problem of equilibration

Imagine we have an observable A = Â + Â+, where Â = |0 >< 1|. We see that

this is an observable, because it is hermitian. Now we calculate with (3) the

expectation value of this observable

< A > (t) = Tr{ρ(t)A} = 2ρ0,1(0) cos(
E1 − E0t

~
) (9.8)

and we see that this would never equilibrate. The ensemble exhibits permanent

oscillations.

So we can conclude from this, that we need at least a restricted class of observ-

ables, which we call realistic observables. Additionally we see that the formula

above depends also on the initial conditions. So we will also look for realistic

initial conditions.

9.2.3 Realistic observables

A realistic observable A must represent an experimental device with a finite range

of possible outcomes of a measurement. So we define the range

∆A = max
H

< Ψ|A|Ψ > −min
H

< Ψ|A|Ψ > . (9.9)

We say δA is the resolution limit and defines the precision that we can measure.

Within δA we cannot see the differences. All measurements known to the present

yield ∆A

δA
≤ 1020.

So we know now what realistic observables are and now we define

∆′A = max
H+

< Ψ|A|Ψ > −min
H+

< Ψ|A|Ψ >, (9.10)
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where we replaced H by H+. Remember that H+ throws away the states, which

have no probability to occur. So we have ∆′A ≤ ∆A.

Now consider an observable of the form

B(~b) =
∑
n

nn|n >< n|, (9.11)

with arbitrary real coefficients~b = (b0, b1, ...). We see this observable is stationary.

We consider now any observable of the form A − B(~b). So we discount the

stationary part, because the stationary part always equilibrates. So we dont care

about it. We then end up with

∆′′A = min
~b
{max
H+

< Ψ|A−B(~b)|Ψ > −min
H+

< Ψ|A−B(~b)|Ψ >}. (9.12)

And this leads to ∆′′A ≤ ∆′A ≤ ∆A and thus

∆′′A
δA
≤ 1020. (9.13)

9.2.4 Realistic initial conditions

Consider pn = ρnn(0), where ρnn is the initial condition. Now we do not know

how pn exactly looks like. For this we say that we can write the concomitant

ensemble averaged level populations in the form pn = h(En) + δpn, where h(En)

is a smooth function and δpn is the fluctuation.

To get an idea of exotic order of the magnitude of pn, consider a macroscopic

system with f degrees of freedom. We get roughly 10(1023) energy levels per

Joule. Even if we have a very small energy interval, we still have very many

energy levels in this interval. So the energy levels are very dense. Even if the

energy levels are populated extremely unequally, we still expect that

max
n

pn = 10−O(f). (9.14)

This should be clear, if we use the normalization condition (6) and say that the

fluctuations are small.

We take it for granted, that the multiplices of the degenerate energies are not

exactly large, very much smaller than 10−O(f). So we can make the rough estimate

max
En

pEn = 10−O(f). (9.15)
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9.2.5 Generic Hamiltonians

The true Hamiltonian of a given system is usually not known in detail. We assume

that our Hamiltonian has a generic. So we say that the energy differences are

never exactly equal. Formally:

If Ej 6= Ek and Em 6= Em
and Ej − Ek = En − Em
This implies that Ej = Em and Ek = Em

We call this the non-resonance condition or the non-degenerate energy gap con-

dition.

9.2.6 Equilibration for an isolated system

We define

ρeq = ρ(t) = lim
T→∞

1

T

∫ T

0

ρ(t)dt. (9.16)

and thus

ρeq =
∑
n

ρnn(0)|n >< n| =
∑
n

pn|n >< n| (9.17)

So we see, that the equilibrium state depends on the initial condition.

Consider the mean square deviation

σ2
A = [< A > (t)−< A > (t)]2. (9.18)

In some further steps, which you can find in the paper ”Canonical thermalization”

of P. Reimann, we finally obtain

σ2
A = (∆′′A)2 max

n
pEn . (9.19)

In this proof we used the fact, that the Hamiltonian is generic.

Next we involve Chebychevs inequality

Prob(|x− µ| > κ) < (
σ

κ
)2, (9.20)

where x is a random variable µ the average and κ > 0.

With this we get

Prob(|Tr{ρ(t)A} − Tr{ρeqA} ≥ δA) ≤ (
σA
δA

)2. (9.21)
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So the difference of Tr{ρ(t)A} and Tr{ρeqA} is below the resolution limit δA for

any realistic observable. If we put in equation (19) and then use (13) and (15)

we get

Prob(|Tr{ρ(t)A} − Tr{ρeqA} ≥ δA) ≤ (1020)210−O(f). (9.22)

With this we can say that the system looks exactly as if it were in the steady

state ensemble ρeq for the overwhelming majority of time, because (1020)210−O(f)

is so small, that we can neglect it.

This deviation is based on the exact quantum mechanical time evolution without

any modification or approximation. The full quantum mechanical time-inversion

invariance is still contained in our result.

9.3 Equilibration for an system in contact

with a large bath

We want to show in this section that a system, which is in contact with a large

enough bath, equilibrates. This is contained in the previous section but now we

do not use the concept of realistic observables.

9.3.1 Setup and Definitions

Consider a large quantum system in a Hilbert space H, which can be decomposed

in a subsystem and a bath H = HS ⊗ HB. We assume that the corresponding

dimensions are finite. To mention is that we did not make special properties to

the both systems. We assume also that our Hamiltonian is generic like in the

previous section.

Denote by |Ψ(t) > the global pure state of the system (bath and subsystem) at

time t. We can thus write the density matrix ρ(t) = |Ψ(t) >< Ψ(t)| and we

obtain the reduced density matrix by tracing over B or S:

ρS(t) = TrBρ(t) (9.23)

and

ρS(t) = TrBρ(t). (9.24)

We define the time-averaged state

ω = ρ(t) = lim
T→∞

1

T

∫ T

0

ρ(t)dt (9.25)

and similarly we define ωS and ωB.
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The effective dimension of state ρ is defined as

deff (ρ) =
1

Tr(ρ2)
. (9.26)

This tells us how many pure states contribute to the mixture.

Finally we define the distance between two density matrices by a strong and very

natural distance, namely the trace-distance

D(ρ1, ρ2) =
1

2
Tr(
√

(ρ1 − ρ2)2). (9.27)

This characterizes how hard it is to distinguish two states experimentally.

9.3.2 Equilibration

A central result of this section will be:

Every pure state of a large quantum system that is composed of a large

number of energy eigenstates and which evolves under any arbitrary

Hamiltonian (with non-degenerate energy gaps) is such that every

small subsystem will equilibrate.

A large number of energy eigenstates means that we have a lot of change during

the time evolution.

For this we first want to show, that whenever the state of the bath goes through

many distinct states, any small subsystems reaches equilibrium.

Evolving through many distinct states is mathematically encapsulated by the

effective dimension of the time-averaged state.

Suppose

|Ψ(t) >=
∑
n

cne
−iEnt

~ |n >, (9.28)

where ∑
n

c2
n = 1. (9.29)

With (3) and (25) we finally obtain

deff (ω) =
1

Tr(ω2)
=

1∑
n

|cn|4
. (9.30)

So we see, the more distinct energy eigenstates we have, the bigger is deff (ω).
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Now we come to our first Theorem:

Theorem 1 Consider any state |Ψ(t) >∈ H evolving under a Hamiltonian with

non-degenerate energy gaps. Then the average distance between ρS(t) and its

time-average ωS is bounded by

D(ρS(t), ωS) ≤

√
dS

deff (ωB)
≤

√
d2
S

deff (ω)
(9.31)

The proof ot this Theorem can be found in the paper ”Quantum mechanical evo-

lution towards thermal equilibrium” from N.Linden.

Our subsystem will equilibrate when deff (ω) is much larger than two copies of

the subsystem.

This result about equilibration is completely general. We did not assume anything

special about the interaction, neither have we assumed any special properties of

the bath. Theorem 1 depends only on the dimension of the subsystem and on

the effective dimension of ω and not on what that particular subsystem is or how

we partitioned our total system.

In some few words we put a bound on the fluctuation state of the subsystem

around the time-average.

Now we just have to show that deff (ω) is a big number and this causes the bound

in Theorem 1 to be much sharper. For this we consider a restricted Hilbert space

HR ⊂ H = HS ⊗HB with dimension dR. A restriction could for example be that

the energy is conserved.
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Now we come to our second Theorem:

Theorem 2

(i) The average effective dimension < deff (ω) >Ψ, where the average is computed

over uniformly random pure states |Ψ >∈ HR is

< deff (ω) >Ψ≥
dR
2

(9.32)

(ii) For a random state |Ψ >∈ HR, the probability that deff (ω) is larger than dR
4

is exponentially small

PrΨ{deff (ω) <
dR
4
} ≤ 2e−csqrtdR (9.33)

The proof ot this Theorem can be found in the paper ”Quantum mechanical

evolution towards thermal equilibrium” from N.Linden.

So we see, that deff (ω) is a really big number for a macroscopic system and it

scales with the dimension dR. In other words we showed that the subsystem will

equilibrate if dR � dS, for almost all initial states of the bath or subsystem.

9.4 Thermalization

Imagine again that we are in a system which can be decomposed H = HS ⊗HB,

like in the previous section, where S is the subsystem and B is the bath. We

have the Hamiltonian H = H0 + V where H0 = HS +HB and V is the coupling

between both.

We know from before that Thermalization is characterized by:

(i) Equilibration

(ii) Initial state independence

(iii) the Boltzmann form of the equilibrium state

The Boltzmann form of the equilibrium state ρ = 1
Z
e
−HS
kBT is also called Gibbs

state sometimes.

In the previous section we explained equilibration. So we fulfilled the first point.

For the initial state independence we need an energy distribution, which is in a

small interval [E,E + ∆] and vanishes otherwise. Additionally we need the weak

coupling approximation ‖V ‖∞ � kBT < ∆.

To fulfill the last point we need additionally the case with an exponential density

of states and thus we will get to equilibration towards a Gibbs state.
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9.5 Conclusion

The problem of equilibration can be explained by using the concept of realistic

observables and generic Hamiltonian and by throwing away degrees of freedom.

In our consideration we showed that equilibration can be explained for a large

system or for system which is connected to a much larger bath. So we can explain

why the hot cup of coffee equilibrates in room temperature. The reason is that

the hot cup of coffee is coupled to a much larger environment. To explain ther-

malization we need some more restrictions like to have a small energy interval,

weak coupling and exponential density of states. The main problem of explain-

ing the problem of equilibration and thermalization is, that we could not until

now derive those phenomena from the basic dynamical laws such as Newtons or

Schrodingers equation.
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Chapter 10

Jaynes’ Principle

Thomas Karg
supervisor: Joe Renes

The maximum entropy (or Jaynes’) principle is introduced as a

principle of statistical inference, which is least biased with respect

to available information. Based on this principle, a generalized

form of statistical mechanics is established, that does not rely

on assumptions on the physical nature of a system other than

its accessible quantum states. In quantum statistical mechanics

the density matrix has the meaning of a generalized probability

distribution, and can be inferred by maximum entropy in the

same way. Finally, it is discussed how irreversible phenomena in

a macroscopic closed system can be identified with information

loss from the point of view subjective statistical mechanics.

10.1 Introduction to Statistical Inference

10.1.1 Interpretation of Probability

Probability theory is a rigorous field of mathematics. However, application to

real systems always demands an interpretation of what probabilities represent.

This is important when making predictions about physical behaviour based on

experimental data.

The most intuitive way to imagine probabilities is to regard them as frequency

ratios. Rolling a die a thousand times and counting the numbers for each side to

appear gives an impression of whether it is biased or not. This objective school
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of thought is thus based on the notion that probabilities are experimentally ver-

ifiable. They are deemed intrinsic properties of a system.

On the other hand we might consider a deterministic machine that obeys to some

mechanism unknown to us. Then the probability that it produces some outcome

is rather a statement of our ignorance about its true dynamics. Thus from a sub-

jective point of view probabilities represent a state of knowledge of the observer.

Setting up a probability distribution in the subjective sense requires getting in-

formed about what we really know1.

Both of these concepts are necessary in statistical mechanics, neither can cover all

problems that are encountered[1]. A connection between them is established in

that objective experimental results are often taken as the information available

for a subjective treatment. Statistical inference, the process of estimating a

probability distribution from empirical data, can rely on either one. The two

inference models presented here, Bayesian updating and the maximum entropy

method, are both of the subjective kind.

10.1.2 Bayesian Inference

The method of Bayesian inference employs a mechanism of updating prior prob-

abilities by experimental data to give posterior probabilities. This is based on

Bayes theorem[2]

P [A|B] =
P [B|A] P [A]

P [B]
, (10.1)

which relates the conditional probability of an event A given the event B, P [A|B],

to its counterpart B given A. To make use of this in statistical inference consider

an event space Ω = {ω1, ..., ωK} and the space P(Ω) of all probability distribu-

tions on Ω. Let X be a random variable on Ω. In N independent measurements

of X, xi = X(ωi) is obtained ni times (i = 1, ..., K,
∑

i ni = N). Denote by

n = (n1, ..., nK) the frequency vector of events {X = xi} and p = (p1, ..., pK) the

corresponding probability vector. Bayes theorem now provides a framework to

describe the likelihood that some probability distribution p is realized posterior

to the measurement n

π[p|n] =
P [n|p] π[p]

P [n]
. (10.2)

1This rather philosophical statement resembles the famous words of Socrates, “I know that

I know nothing”.
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Here π[p] is the prior probability that the true distribution is p and π[p|n] is

the posterior or updated probability that it is still p. P [n|p] must be calculated

with some model which is often a multinomial distribution

P [n|p] =
N !∏K
i=1 ni!

K∏
i=1

pnii .

P [n] is calculated from the law of total probability

P [n] =
∑

q∈P(Ω)

P [n|q] π[q] .

Finally a prediction about the probability of the event {X = xi} in the N + 1th

step can be made:

P [xi|n] =
∑

p∈P(Ω)

pi π[p|n] . (10.3)

If the frequencies of the single events ni are not known, but only the average

value X =
∑

i
ni
N
xi, the model has to be slightly adapted:

P [xi|X = x] =

∑
{n|X=x} pi P [xi|n] P [n]

P [X = x]
. (10.4)

It has not been answered yet, what the prior probability π[p] should be. Clearly,

in a case when no information is given, it should be a uniform distribution over the

entire probability space. In fact, Bayesian updating can be seen as an iterative

process. At the beginning, no information is given. Then, measurements are

performed that yield data sets n on the basis of which the prior probability

can be updated to the corresponding posterior. If there is yet another source

of information, the process can be repeated with the previous posterior as new

prior.

10.1.3 Maximum Entropy

As Shannon [3] pointed out, the entropy of a probability distribution S(p) =

−
∑

i pi ln pi is the unique measure of its uncertainty that satisfies the proper-

ties positivity, concavity and subadditivity. In the usual problem of statistical

inference, the probability distribution of a random variable is to be estimated

from partial knowledge. Thus our motivation in finding the distribution which

maximizes the associated entropy is to take account of our restricted knowledge.

The maximum entropy distribution is expected to be least biased.
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Suppose now we have access to experimental data about some function f(X)

where X is a random variable as in the Bayesian case. This means we know the

average value f(X). The maximum entropy probability distribution of X can

now be calculated by means of Lagrange multipliers. The constraints are

f(X) = 〈f(X)〉 =
∑
i

pif(xi) , and (10.5)

1 =
∑
i

pi . (10.6)

Thus the maximizing condition is

0 = δ

(
−
∑
i

pi ln pi − α
(∑

i

pi − 1
)
− β

(∑
i

pif(xi)
))

. (10.7)

which leads to2

p̂i(β) = Z(β)−1 e−βf(xi),

Z(β) =
∑
i

e−βf(xi), (10.8)

Ŝ(〈f(X)〉) = lnZ(β) + β〈f(X)〉.

The quantity Z is called the partition function and contains all the information

about the system available to us. It is the central property in this formalism.

Note that the entropy is a function of 〈f(X)〉 ≡ 〈f〉 only. The Lagrange multiplier

β is determined from

〈f〉 = − ∂ lnZ(β)

∂β
.

This condition also specifies that S and lnZ are linked by a Legendre transfor-

mation. An equivalent constituting equation for β is thus

β =
∂Ŝ(〈f〉)
∂〈f〉

.

If f is a function of an additional parameter ξ we can calculate the expected

value of the derivative 〈
∂f

∂ξ

〉
= − ∂ lnZ

∂ξ
.

2The extremal quantities are denoted by a .̂
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In the case that there are multiple quantities fr available to experiments, the

results are easily generalized:

p̂i(β) = Z(β)−1 exp
(
−
∑
r

βrfr(xi)
)
,

Z(β) =
∑
i

exp
(
−
∑
r

βrfr(xi)
)
, (10.9)

Ŝ = lnZ +
∑
r

βr〈fr〉.

We can further calculate the covariances

Cov(〈fr〉, 〈fs〉) =
∂2 lnZ

∂βr∂βs
.

Finally, consider a small perturbation of the system affecting both the functions

fr as well as their observed average values fr independently of each other. In the

MEP picture, the infinitesimal change in entropy is

δS = δ lnZ +
∑
r

δ(βr〈fr〉)

=
∑
r

(∂ lnZ

∂βr
δβr − βr〈δfr〉

)
+
(
〈fr〉δβr + βrδ〈fr〉

)
=

∑
r

βr

(
δ〈fr〉 − 〈δfr〉

)
. (10.10)

In contrast to the Bayesian approach, it is apparent that the Maximum Entropy

method delivers closed form analytical expressions for the estimated probabili-

ties. The associated rules for computation are based on the partition function as

central quantity, whose derivatives yield information about the properties of the

studied system.

10.1.4 Critique

Both methods establish a closed formalism for the inference of a probability dis-

tribution based on partial information. It is worth noting, that the Bayesian

approach is sensitive to the size of the data sample N . On the contrary, the

maximum entropy method starts with equating the average with the expectation

value and thus loses this sensitivity. From this observation it would be a condi-

tion of consistency if both methods gave the same results in the large N limit.

However this is not always the case.
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Assume, e.g., a die, that shows an average of 3.5 after N tosses [2, 4]. If N is

large one would expected to have an unloaded die, i.e. pi = 1/6 for all i. This is

exactly the result obtained from the MEP. Bayesian updating, however, starting

with a uniform prior, yields a probability distribution that is symmetric around

3.5 – i.e. p1 = p6, p2 = p5, p3 = p4 – yet slightly biased towards 3 and 4. The

bias only grows in the large N limit. Mathematically both results are justified as

they reproduce the experimental result. However it reveals a conceptual differ-

ence between them. The MEP is completely unbiased, whereas Bayes puts extra

weight to outcomes that lie closer to the observed average. It is a general feature

of MEP that it cannot produce any peaked probability distributions since e−βfi

is monotonic in fi.

Finally, it is worth examining the structure of the MEP. The idea behind maxi-

mizing entropy is to create a probability distribution which is “maximally non-

commital with respect to given information” [1]. One first observation is that the

probability distribution, as well as the partition function from eq. 10.9 factor out

into a product over the various constraints:

p̂i(β) =
∏
r

Zr(βr)
−1 exp(−βrfr(xi)) =

∏
r

p̂i,r(βr) ,

Z(β) =
∏
r

∑
i

exp(−βrfr(xi)) =
∏
r

Zr(βr) .

This means that MEP automatically imposes an independence assumption on the

various constraints. In practice this is not a big problem as most quantities are

indeed independent [4]. However including experimental data from interdepen-

dent quantities has less information content and therefore less predictive capacity.

MEP would thus lead to stronger assumptions than really allowed. This feature

is changed in the treatment of quantum probability.

Another core element of MEP is the constraint rule. In the beginning, the con-

straint rule was established by equating the empirical average with the expecta-

tion value f = 〈f〉. This is a voluntary step of discarding information about the

sample size. Still, the sample average is an unbiased and consistent estimator for

the expected value and thus a reasonable choice3. Another objection is one could

as well choose the harmonic mean instead of the arithmetic mean and get differ-

ent results. However this is a decision that depends on the type of experiment

one performs, whether one measures f(X) or the inverse quantity f(X)−1.

3Meaning 〈X − 〈X〉〉 = 0 (unbiased), and lim
N→∞

P [|X − 〈X〉| > ε] = 0 ∀ε > 0 (consistent).
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The constraint rule also establishes a bridge between event-based Bayesian up-

dating and probability-based MEP [2]. The Bayes method is designed to estimate

the posterior probability π[xi|A] of an event {X = xi} after observation of an

event A ⊂ ΩN (i.e. A = {X = x}). Jaynes’ principle on the other hand uses

information about the probability distribution itself, i.e. a constraint 〈X〉 = x.

Now the bridge is to express a such constraint in terms of observed events, like

the previous 〈X〉 = X = x.

Still, MEP does not include any possibility for updating an existing probability

distribution. This could be implemented by means of the relative entropy

S(P |Q) = −
∑
i

pi(ln pi − ln qi) = S(P )− 〈− lnQ〉 .

where Q, P represent the probability distributions defined by the qi, pi. The

relative entropy is a measure for the distinguishability between Q and P . Q

could be interpreted as the prior and P as the posterior probability. 〈− lnQ〉 is

the prior uncertainty. It can be shown [2], that maximizing S(P |Q) with respect

to the constraint that a given observed event A has probability 1, i.e. P [A] = 1,

directly gives the Bayesian posterior P [xi|A]. Thus in this context of maximum

relative entropy, Jaynes’ principle is a generalization of Bayesian inference.

10.2 Generalized Statistical Mechanics

10.2.1 Motivation

It is now at the time to turn over to statistical mechanics and see how the maxi-

mum entropy principle can be applied to lead to a more general theory. For this

purpose consider an arbitrary macroscopic system.

A microstate is a quantum state of the studied system. A macrostate is the set

of all microstates that are macroscopically equivalent, i.e. they produce the same

macroscopic behavior. Take as an example a lattice of N indistinguishable spins.

Then configurations with the same number K of “spin ups” might be consid-

ered macroscopically equivalent, as they give rise to the same . Microscopically,

however, every such macrostate is degenerate by a factor given by the number

of permutations of spins
(
N
K

)2
. In principle this can be generalized to the mul-

tiplicity of a macrostate, specified by the occupancy vector n = (n1, ..., nk) of

microstates labelled 1, ..., k,

W (n) =
N !∏k
i=1 ni!

=

(
N

n1, ..., nk

)
,
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where
∑k

i=1 ni = N is the total number of microstates. Following Boltzmann’s

definition of the entropy of a macrostate defined by the occupancy n

S(n) = −kB
N

lnW (n),

one obtains in the limit of a system of infinite degrees of freedom and by use of

Stirling’s formula

S(n) = −kB
lnN !−

∑
i lnni!

N
N→∞∼ −kB

∑
i

ni
N

ln
ni
N

.

Here the assumption has been made that the ni grow large with N as well,

asymptotically with a proportionality constant pi = limN→∞
ni
N which can be

interpreted as the probability of the system to be in microstate i. Thus the

Shannon entropy is retrieved from the Boltzmann entropy in the limit of a sys-

tem of infinite degrees of freedom. However, this link between information theory

and thermodynamics is not compulsive as it is not clear whether the Boltzmann

entropy itself is a correct expression for thermodynamic entropy.

The standard task of statistical mechanics really is to infer the probability distri-

bution over all microstates that results in the macroscopically observed behavior.

Conventional statistical mechanics imposes some assumptions, such as equal a

priori probabilities or ergodicity, which in fact cannot be easily justified for real

physical systems. More fundamental is the notion of macroscopic uniformity : For

macroscopic systems to show reproduceable behavior it is necessary that their

probability distribution over macrostates are strongly peaked around one spe-

cific macrostate. From that point of view the physical behavior is dominated by

the most probable macrostate (with maximal multiplicity), which is in this case

equivalent to choosing the maximum entropy distribution over all microstates.

The generalization by the MEP lies in making entropy the fundamental concept.

This way one obtains the broadest possible distribution over microstates compat-

ible with initial, i.e. average energy. Jaynes interprets this as an ergodic property

[1]: “[The MEP] assigns positive weight to every situation that is not absolutely

excluded by the given information.” In contrast to the previous line of reason-

ing assumptions about the real distribution over macrostates is not needed any

more to make appropriate predictions. Instead, the MEP distribution, honestly

reflecting the present state of knowledge about the system, is the most adequate

choice from a subjective point of view. Thus statistical mechanics is treated as a

theory of statistical inference.
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10.2.2 Microcanonical, Canonical and Grand Canoni-

cal Ensemble

The central quantity of a physical system is its energy. Suppose a given system is

known to be in a quantum state of energy E. This is the only information avail-

able in the microcanonical ensemble. We can translate this to a constraint on

the probability distribution of the system: Only those states have nonzero prob-

ability which have energy E, or equivalently 1 =
∑
{i|Ei=E} pi. Using this within

the MEP we obtain a uniform distribution on all degenerate microstates with en-

ergy E. This is precisely the statement of the notion of equal a priori probabilities.

A less severe constraint is to fix the average energy of a system, i.e. E = 〈E〉 =∑
i piEi. Applying the MEP to this canonical ensemble leads to

p̂i = Z−1 e−βEi , (10.11)

Z =
∑
i

e−βEi , (10.12)

Ŝ = lnZ + β〈E〉 . (10.13)

β is the inverse temperature4 1/T as obtained from an analog of eq. (10.1.3),

F = −kBβ−1 lnZ is the free energy. Eq. (10.13) states F = 〈E〉−TS. By taking

its total differential it follows

dŜ = d lnZ + 〈E〉dβ + βd〈E〉
= −〈E〉dβ + (d lnZ)β + 〈E〉dβ + βd〈E〉

⇒ d〈E〉 = TdŜ − kBT (d lnZ)β .

The first term accounts for an energy change due to exchange of entropy which

is heat in the thermodynamic sense. Considering that the partition function may

depend on additional parameters via the Ei, i.e. volume, external fields, etc., the

second term can be identified with isothermal work done by the system. This

statement thus strongly resembles the first law of thermodynamics. In addition

eq. (10.10) can be interpreted in this way. The quantities δQr = δ〈fr〉 − 〈δfr〉
have the meaning of a sort of generalized heat with their Lagrange multipliers βr
corresponding to generalized temperatures.

Finally, information about the number of particles N in the system might be

available, too. Note that together with the additional constraint N =
∑

i,N pi,NN

there is a change in the energy level structure. The energies depend on N , too,

4in units of kBJoule−1
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and there is no such factorization as seen in the beginning. The probability

distribution of the grand canonical ensemble is

p̂i,N = Z(β, γ)−1e−βEi,N−γN ,

Z(β, γ) =
∑
i,N

e−βEi,N−γN =
∑
N

e−γNZ(N)(β) .

where Z(N)(β) =
∑

i e
−βEi,N is the canonical partition function of an N particle

system, γ = −βµ with µ being the chemical potential[1]. Here, we can draw an

analogy to the free energy of the canonical ensemble and define the grand po-

tential f(β, µ) = −β−1 lnZ(β, µ). Since the derivatives of the partition function

allow in principle to calculate any physical property of the system, the free energy

and the grand potential are the naturally arising thermodynamic potentials.

10.2.3 Extension to the Density Matrix Formalism

In the quantum case, observables are represented by self-adjoint operators and

the state of a system is fully described by a density matrix ρ. Expectation values

are calculated via

〈A〉 = tr(ρA) .

The von Neumann entropy is

S(ρ) = −tr(ρ ln ρ) . (10.14)

The von Neumann entropy generalizes the Shannon entropy because the density

matrix ρ is hermitian and thus diagonalizable with eigenvalues λi with orthonor-

mal eigenvectors ψi. An alternative version of eq. (10.14) is thus

S(ρ) = −
∑
i

λi lnλi . (10.15)

Since its eigenvalues satisfy the normalization condition
∑

i λi = 1, the spectrum

of a density matrix can be interpreted as a probability measure. The λi’s are the

probabilities of the system to be in the pure state |ψi〉〈ψi|.

Some important properties of the von Neumann entropy are [5]:

148



Jaynes’ Principle [Thomas Karg]

(1) positivity: S(ρ) ≥ 0 and S(ρ) = 0 iff ρ is pure.

(2) concavity: S(
∑

i λiρi) ≥
∑

i λiS(ρi).

(3) unitary invariance: S(UρU †) = S(ρ) ∀ U unitary.

(4) subadditivity: Let the Hilbert space H = HA⊗HB and for a density

matrix ρ on H denote ρ′ = ρA⊗ ρB, with reduced den-

sity matrices ρA,B. Then S(ρ) ≤ S(ρ′) = S(ρA) +S(ρB)

with equality iff ρ = ρ′.

Most interestingly, unitary invariance implies that the von Neumann entropy of a

closed Hamiltonian system is constant in time. Microscopically all physical pro-

cesses have time inversion symmetry, i.e. they are reversible. This seems to stand

in contradiction with macroscopically irreversible phenomena in closed systems

[5, 6]. An approach to solve this conflict is presented in section 10.3.

Maximum entropy inference of the density matrix of a quantum system proceeds

in the same way as in the classical case. Suppose the average values of some

observables Fi have been measured. Then the maximization condition writes

0 = δ

(
S(ρ)− α(tr(ρ)− 1)−

∑
i

βi(tr(ρFi)− Fi)

)

= δ

(
tr
(
ρ
(
− ln ρ− α id−

∑
i

βiFi

))
+ α +

∑
i

λiFi

)
.

This leads to the MEP states [6]

ρ̂ = Z−1 exp(−
∑
i

βiFi) ,

Z = tr(exp(−
∑
i

βiFi)) ,

Ŝ = lnZ +
∑
i

λi〈Fi〉 .

in complete analogy to the result (10.9). All previous equations can be adapted

from the previous discussion with the important difference is that the Fi are op-

erators and need not commute in principle. An example are the quadratures of

a quantum mechanic oscillator or field mode. Correspondingly, their quantum

nature forces them to obey certain uncertainty relations. Thus even if we are

equipped with information about their expectation values, measurement impre-

cision will always have quantum noiseas a lower bound. This uncertainty is then

transferred to the inferred density matrix. In fact, quantum measurement itself

is linked with an entropy change, too[7].
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10.2.4 Coupled Systems – Baths

Consider a composite system H = H1 ⊗H2 ⊗H3 with operators

H = H1 ⊗ 1⊗ 1 + 1⊗H2 ⊗ 1 ,

G = G1 ⊗ 1⊗ 1 + 1⊗ 1⊗G3 , (10.16)

F = F1 ⊗ 1⊗ 1 .

Note that this choice of operators does not contain any coupling terms of the

form, e.g. H12 = V1 ⊗ V2 ⊗ 1. The systems can thus be regarded independent,

an approximation valid in the case when couplings are small compared to the

existing energy level spacings. In the following the abbreviation 1 ⊗ A ≡ A

is made for all operators on the right-hand-side of eq. (10.16). The partition

function for a system with known expectation values of the above observables is

Z(β, γ, λ) = tr exp(−βH − γG− λF )

= tr exp
(
− (βH1 + γG1 + λF1)− βH2 − γG3

)
= tr exp(−βH1 − γG1 − λF1) · tr exp(−βH2) · tr exp(−γG3)

= Z1(β, γ, λ) · Z2(β) · Z3(γ) .

It factors out into contributions from either system. Likewise the density matrix

writes

ρ(β, γ, λ) = Z−1 exp(−βH − γG− λF )

=
exp(−βH1 − γG1 − λF1)

Z1(β, γ, λ)
⊗ exp(−βH2)

Z2(β)
⊗ exp(−γG3)

Z3(γ)

= ρ1(β, γ, λ)⊗ ρ2(β)⊗ ρ3(γ) .

It is now apparent that the parameters β and γ are simultaneous properties of

systems 1 and 2, respectively 1 and 3. They are equilibrium properties which

can be fully determined by measuring the conjugate observable in either of the

corresponding subsystems.

For example, H might be the Hamiltonian of the total system and β the inverse

temperature. Then β satisfies both of the equations

〈H1〉 =
∂ lnZ1

∂β
, (10.17)

〈H2〉 =
∂ lnZ2

∂β
. (10.18)

One can think of H1 as the main system of interest and H2 as an energy bath,

a thermometer. Then after calibrating temperature to the energy spectrum of
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H2 in virtue of (10.18) full information about the average energy of H1 can

be obtained from measuring β in H2. Information is transferred between the

two systems without interference [6]. The same is valid for the relation between

systems 1 and 3. It is thus possible to imagine a system coupled to several baths

operating as measurement devices for certain properties of the original system.

10.3 Irreversibility through Information Loss

As already mentioned, the unitary time evolution of a closed quantum mechan-

ical system directly imposes that its von Neumann entropy be constant in time.

However this principle of microscopic reversibility is not valid any more for a

macroscopic system. In this section, this apparent contradiction shall be lifted

by adopting a subjective point of view. The idea is to treat irreversibility not as

an intrinsic property of a physical system, but as a property of an observer with

incomplete knowledge of its true state[6]. Increase in entropy is, in this picture,

identified with information loss.

Two primary mechanisms that discard information are voluntary. Suppose that

we are interested merely in one particular observable F and its expectation value.

Then it is convenient to work in the eigenbasis of F :

〈F 〉 = tr(ρF ) =
∑
i

ρiifi,

where the fi are the eigenvalues of F . A suitable approximation to ρ would thus

be to make the replacement ρkl 7→ ρ′kl = δklρll in the eigenbasis of F . 〈F 〉 is not

changed by this so-called removal of coherences [6]. However this simplification

comes at the cost of any other observable that does not commute with F . In

terms of entropy it is valid that S(ρ) ≤ S(ρ′) which follows from the concavity

of S.

In another circumstance a composite system H =
⊗n

k=1 Hk might be treated,

with the principal observable writing as a sum over single subsystem terms: F =∑
k Fk, where Fk acts on Hk only. In this case

〈F 〉 = tr(ρF ) =
∑
k

tr(ρFk) =
∑
k

tr(ρkFk) = tr
(

(ρ1 ⊗ ...⊗ ρn)F
)
,

with reduced density matrices ρk = tr6=kρ. The partial trace tr6=k leaves only Hk

untouched. Provided we are only interested in 〈F 〉 it would be equivalent to treat

ρ′ = ρ1⊗ ...⊗ρn instead of ρ. This simplifies the calculation without cutting back

on precision in 〈F 〉. Again, this process of removing correlations [6] gives rise to
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an increase in entropy due to its subadditivity.

We now want to have a look at the case of a system whose hamiltonian does

not commute with the observable we are interested in. An example would be a

system of N identical spins with the magnetization in z-direction being measured:

Sz =
∑

i σ
z
i . The Hamiltonian may have the general Ising form

H = −
∑
i

hi · σi −
∑
i<j

Jxijσ
x
i σ

x
j + Jyijσ

y
i σ

y
j + Jzijσ

z
i σ

z
j

=
∑
i

Hi︸ ︷︷ ︸
H0

+
∑
i<j

Vij︸ ︷︷ ︸
V

.

In the second line, abbreviations for the one particle hamiltonians Hi and two

particle interactions Vij are introduced. Note that [Sz,V ] 6= 0 in general. Thus

even for a magnetic field applied in z-direction, for which the single particle

hamiltonians contain σzi only, H and Sz do not commute. In virtue of removal

of correlations one could make a product ansatz ρ′ = ρ1 ⊗ ...⊗ ρN for the initial

state with5.

ρi =
e−βHi

tr(e−βHi)
. (10.19)

Assuming weak coupling, a perturbational treatment of V may be chosen in the

interaction representation[8]6 with. This does not affect ρ′ as it commutes with

H0. However a time evolution with the interaction propagator

Ũ ′(t) = T exp
(
− ı

~

∫ t

0

U †0(t′) V U0(t′)dt′
)

creates some nonzero correlations again. These are not intended as it does not

correspond to our state of knowledge. Only information about Sz is of interest.

From that point of view any such correlation is not only useless to our goal, but

also injects false information about the true state of the system[6]. Another re-

moval of correlations could balance that which in turn leads to an increase in

entropy. Repeated iteratively, an irreversible process is created based fully on

information loss.

5This is a very rough estimate and could be refined by including a nearest neighbour mean-

field approximation. However this only adds a constant vector to hi and is thus not relevant

here. Moreover an additional term −γσzi could be implemented to account for information

about Sz

6The interaction representation induces the transformations Ã = U†0AU0 for any operator

A (including the density matrix) with the propagator U0(t) = exp(−ıH0t/~)
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In principle, a generalization of the above example is a quantum markov chain

that loses information in each step. Jaynes[6] proposed an “information game”

in which density matrices of a perturbed system are passed between different

observers. Since the nature of the perturbation remains unknown during the

process each iteration accumulates new uncertainty about the true state of the

system. Another example for sources of information loss would be a stochastic

perturbation to a system that is distributed like
∑

α pαVα with probabilities pα.

Finally, a non-selective measurement on a quantum statistical ensemble induces

random projections πi on the eigenspaces of the observable:

ρ 7→ ρ′ =
∑
i

πiρπi .

This has been shown to lead to an decrease in relative entropy [7] between two

different pre-measurement states, meaning that they become harder to distinguish

from each other. Moreover there is an entropy increase in the measurement

apparatus that outweighs the entropy decrease in the system.

10.4 Conclusion

The MEP has been successfully applied to problems of statistical inference when

only partial information is given. Motivated by the interpretation of entropy as a

measure of uncertainty a probability distribution inferred by the MEP is designed

to merely use given information and not more. However it appears delicate how

to formulate available information as a constraint to the sought for distribution.

Still, a great advantage of applying the MEP to statistical mechanics has shown

to provide the entire formalism without arbitrary assumptions on the physical

nature of an ensemble. This kind of “subjective statistical mechanics” [6] treats

physical systems from an information theoretic point of view.

The question which density matrix to choose to represent a physical system is

strongly related to what answers we expect it to give. If a Stern-Gerlach type

of experiment is considered, the complete density matrix including all correla-

tions between single spins would certainly be required to predict the outcome of

any possible experiment. However the reduced density matrix of a single spin

is sufficient to set up an experimentally verifiable probability distribution for a

given situation. Considering the typically small amount of available information

it would even be inappropriate to use the full density matrix. The MEP has

proven a powerful tool to infer density matrices for such reduced problems and

model interactions with baths.

Finally, regarding statistical physics as an inference problem also turned out
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to suggest how irreversible macroscopic behavior can arise from microscopic re-

versibility. The idea that information about large systems is constantly liable

to being lost is a subjective notion that includes the observer of a system as an

equally important variable. Still, this entire formalism relies on the assumption

that entropy in a quantum system adopts the von Neumann form. In general it

is not clear what the real expression for thermodynamic entropy is. Altogether

it is vital to keep in mind that the MEP is primarily a statistical rather than a

physical theory and as such has a more abstract significance.
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Chapter 11

NMR Quantum Computing

Lukas Huthmacher
supervisor: Dr. Ludwig Klam

This chapter gives a short introduction into the idea of nuclear

magnetic resonance (NMR) quantum computation and some of

the major problems are discussed. After the introduction to the

basic tools of NMR quantum computation, a closer look at so-

called pseudo-pure states is taken. Also the question how to deal

with an ensemble readout is treated during this Chapter.

11.1 Introduction

11.1.1 Motivation

Why are we interested in realizing a quantum computer? Today we need more

and more computer resources to solve computational problems and many of them

are not solvable at all on a classical computer, at least not in reasonable time.

This is because of the huge amount of resources that would be needed to solve

them and not because they are in principle insolvable. Quantum computers would

allow new algorithms which provide a reasonable speed-up over several classical

algorithms and thus allow to solve some of the yet unsolvable problems.

In general we need two-level systems to realize quantum bits and also a possibility

to manipulate and readout the quantum states. Thus the difficulty is, that we

need a quantum computer which is well isolated so that it keeps its quantum

properties, but is also accessible for manipulation and readout.

A single nuclear spin is basically ideal for the representation of a qubit, but as it

has nearly no coupling to the environment it is hard to readout the orientation of
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the single nuclei. Thus the basic idea is to take molecules, where the Fermi contact

interactions provide strong natural couplings, but it is very difficult to cool and

trap a single molecule. That is why the idea came up to use nuclear magnetic

resonance (NMR) to directly manipulate and detect the nuclear spin states using

electromagnetic waves. Another advantage of this idea is, that NMR is a widely

used and well known technique, e.g. in chemistry for NMR spectroscopy or in

medicine for magnetic resonance imaging. Despite some challenges one has to deal

with, the first quantum computer was realized in 2001 using nuclear magnetic

resonance to realize Shor’s quantum factoring algorithm [1].

The challenges one still has to deal with are on the one hand, that NMR is

typically applied to physical systems in thermal equilibrium at room temperature,

which basically means that the initial state of the spins is nearly completely

random, and on the other hand, one has to deal with a large number of molecules

(> 108) to produce a measurable induction signal [2]. This leads to the following

two questions: How can quantum computation be performed with a system in a

high entropy mixed state instead of a pure state? And can the average output

of an ensemble of quantum computers be meaningful? In this Chapter we will

introduce the basic techniques for dealing with NMR quantum computers and

answer these questions.

11.1.2 Experimental setup

The spectrometer consists of a large superconducting magnet to produce a strong

magnetic field B0 in ẑ-direction, which is trimmed to be uniform. In the trans-

verse plane there are radio-frequency (RF) coils which allow to apply small os-

cillating magnetic fields along x̂- and ŷ-directions. The same coils are also used

to pick up the RF signal of the precessing nuclei. For controlling the RF coils

and readout of the induced signal some RF technique is needed, which will not

be specified here. The general setup can be seen in Figure 11.1 and Ref. [2].

Another important part is represented by molecules which are typically dissolved

in a solvent to reduce the concentration such that inter-molecular interactions

become negligible. A typical molecule contains a number n of protons with spin
1
2

or other possible nuclei with spin 1
2
, e.g. 13C or 19F . The frequencies of identical

nuclei can differ by a few kHz upto hundreds of kHz due to the chemical shift. The

chemical shift is denoted by σ and describes the fact that there are differences in

the local magnetic field because of chemical environment shielding effects inside

the molecule. For example in the Trichloroethylene molecule in Figure 11.2 the

two carbon nuclei have different frequencies because of the different environment.
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Figure 11.1: General setup taken from Ref. [2].

Figure 11.2: Trichloroethylene molecule with three qubit:, one proton and two

carbon nuclei (taken from Ref. [2]).
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Figure 11.3: The carbon frequency spectrum of Trichloroethylene. The left four

lines belong to the carbon nuclei next to the proton and the right for lines to

the second carbon nuclei. The four lines are due to couplings to the proton and

the other carbon, that is also why the four lines on the right are closely spaced,

because the coupling to the proton is less strong (taken from Ref. [2]).

To sum up, in typical experiments, one waits several minutes until the nuclei are

settled at thermal equilibrium and then apply the RF pulses to effect the desired

transformations. Afterwards a sensitive pre-amplifier measures the final state of

the spin, which is basically given by the free induction decay signal. A Fourier

transform of this signal gives then the frequency spectrum. An example for this

is given in figure 11.3 which also illustrates the effect of the chemical shift.
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11.2 The Hamiltonian

This section treats only the easiest one and two dimensional cases, as the mul-

tidimensional versions can be derived in an analogous way. First we will derive

the Hamiltonian for a single spin system and then go on with the Hamiltonians

for the different couplings that are present in molecules.

11.2.1 Single spin Hamiltonian

As we are only interested in the magnetic interaction of a classical electromagnetic

field with the two-state spin we neglect the kinetic term and the Hamiltonian is

given by:

H = −µ ·B = −γ ~ I ·B (11.1)

where γ is the gyromagnetic ratio and I the angular momentum operator of the

nuclear spin:

I =

IxIy
Iz

 =
1

2

σxσy
σz

 (11.2)

We choose now the strong uniform and static magnetic field B0 to be oriented

along the ẑ-direction and the small, oscillating magnetic fields B1 with frequency

ω and phase φ to be applied along the x̂- and ŷ-directions. A typical applied field

is therefore given by

B = B0ẑ +B1[x̂ cos(ωt+ φ)− ŷ sin(ωt+ φ)] (11.3)

So we get

H = −γ ~[B0Iz +B1Ix cos(ωt+ φ)−B1Iy sin(ωt+ φ)] (11.4)

We now define the Larmor frequency

ω0 = γB0 (11.5)

and analogously

ω1 = γB1 (11.6)

So the Hamiltonian is now

H = −~ω0

2
σz −

~ω1

2
[σx cos(ωt+ φ)− σy sin(ωt+ φ)] (11.7)

For a form that is nicer to handle we look at the situation in the frame which is

rotating with the frequency ω:

|ϕ(t)〉 = e−iωtσz/2|χ(t)〉 (11.8)
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Substituting this into the Schrödinger equation

i~∂t|χ(t)〉 = H|χ(t)〉 (11.9)

, we obtain

−~ ωσz
2

eiωtσz/2 |ϕ(t)〉+ i~ eiωtσz/2 ∂t|ϕ(t)〉 = H eiωtσz/2 |ϕ(t)〉 (11.10)

and finally

i~∂t|ϕ(t)〉 =
[
e−iωtσz/2H eiωtσz/2 + ~

ωσz
2

]
|ϕ(t)〉 (11.11)

Where we used the property

e−iωtσz/2 σz e
iωtσz/2 = σz (11.12)

. One can also show that

eiωtσz/2 σx e
−iωtσz/2 = σx cosωt− σy sinωt (11.13)

So if we calculate e−iωtσz/2H eiωtσz/2 from Equation 11.11 we get

e−iωtσz/2Heiωtσz/2

=e−iωtσz/2
(
−~σz

2
ω0 −

~ω1

2
(σx cos(ωt+ φ)− σy sin(ωt+ φ))

)
eiωtσz/2

=− ~σz
2
ω0 −

~ω1

2
e−iωtσz/2 ei(ωt+φ)σz/2 σx e

−i(ωt+φ)σz/2 eiωtσz/2

=− ~σz
2
ω0 −

~ω1

2
eiφσz/2 σx e

−iφσz/2

=− ~σz
2
ω0 −

~ω1

2
(σx cosφ− σy sinφ)

(11.14)

Thus the Hamiltonian in the rotating frame reads

H = −~σz
2

(ω0 − ω)− ~ω1

2
(σx cosφ− σy sinφ) (11.15)

One can see that the effect of B1(= ω1

γ
) on the spin is rather small if ω is far away

from ω0. But if ω ≈ ω0 the field B0(= ω0

γ
) contributes nearly nothing and even a

small B1 field has a rather big influence on the spin, that is why this technique

is called nuclear magnetic ”resonance”.

11.2.2 Hamiltonian of coupled spins

In the system we are usually interested in, we have more than one spin. We

consider a nuclear spin of 1/2. The spins interact through two dominant mecha-

nisms:

• direct dipolar coupling

• indirect through-bond electron mediated mechanisms
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Direct dipolar coupling From classical electrodynamics it is known that

the field of a magnetic dipole is given by

B(r) =
µ0

4πr5
[3(µ · r)r − (r · r)µ] (11.16)

If we introduce a second dipole at r12 that couples to this field, we get the

interaction energy and thus the interaction Hamiltonian:

HD
12 = −B(r12) · µ2 =

µ0γ1γ2~2

4πr3
12

[
I1 · I2 −

3

r2
12

(I1 · r12)(I2 · r12)

]
(11.17)

If ω0 is large (which means B0 is large) and |ω1
0 − ω2

0| is much larger than the

coupling strength, the spins are aligned in the ẑ-direction and the Hamiltonian

can be approximated by

HD
12 =

µ0γ1γ2~2

4πr3
12

I1
z I

2
z [1− 3 cos2 θ12] (11.18)

In a liquid with low viscosity the dipolar interactions are averaged out, it can

easily be shown that
∫ π

0
(1 − 3 cos2 θ) sin θ dθ = 0 and thus the spherical average

over HD
12 goes to zero. For a system with N spins it follows directly that the

Hamiltonian is given by

HD =
µ0~2

4π

1

2

N∑
i=1

N∑
k=1

[
γiγkI i · Ik

r3
ik

− 3(γiI i · rik)(γkIk · rik)
r5
ik

]
(11.19)

Through-bond interactions / J-coupling These indirect interactions de-

scribe the fact, that the nuclei are coupled due to electrons that are shared in the

chemical bond. The coupling is also known as J-coupling or scalar-coupling. In

general the Hamiltonian for the scalar coupling between two spins is given by

HJ
12 = 2πI1 · J · S2 (11.20)

Where J in general is a tensor. A first sensible approximation is to assume a

scalar coupling constant wicht then leads to the expression

HJ
12 = 2π J12I1 · S = 2π ~ J12 I1 · I2 (11.21)

If we again consider that |ω1
0 − ω2

0| � 2π J12 the Hamiltonian is approximately

given by

HJ
12 ≈ 2π ~ J12 I

1
z I

2
z (11.22)

Again we can easily switch to an N spin system

HJ = ~π
N∑
i=1

N∑
k=1

Jik I
i
z I

k
z (11.23)
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11.2.3 Density operator

As already mentioned NMR differs a lot from other methods of quantum com-

putation, as it is consisting of an ensemble of systems and the measurement is

an ensemble average. Since the system is not prepared in a special ground state,

the initial state is given by the thermal equilibrium state

ρ =
e−βH

Z
(11.24)

, where Z = tr(e−βH) is the usual partition function normalization, which ensures

that tr(ρ) = 1. As the experiment is normally set up at room temperature, we

have for modest fields Hβ ≈ 10−4 and the high temperature approximation is

appropriate:

ρ ≈ 1− βH
tr (1− βH)

= 2−n [1− βH] (11.25)

Note that we have used that the Hamiltonian is traceless due to the fact, that

the Pauli matrices are traceless.Let us consider the following two examples.

The density operator for a single spin at thermal equilibrium is simply

ρ ≈ 1

2
− ~ω0

4kBT
σz =

1

2
− ~ω0

4kBT

[
1 0

0 −1

]
(11.26)

If we assume a 2 spin system with 4ωA ≈ ωB we get

ρ ≈ 1

4
− β

4
(HA ⊗ 1 + 1⊗HB) =

1

4
− ~ωB

8kBT


5 0 0 0

0 3 0 0

0 0 −3 0

0 0 0 −5

 (11.27)

11.3 Quantum gates

It was shown that any unitary transformation U acting on N qubits can be com-

posed of CNOT gates and single qubit rotations. That is the reason why we limit

the discussion to the implementation of these two gates, which are represented

by the matrices

UCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , Rn̂(θ) = e−i
θn̂·σ

2 (11.28)

Where R denotes the rotation of an angle θ about the axis n̂.
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11.3.1 Rotations

Analogue to the rotation operator Rn̂(θ) = e−i
θ
~ n̂·L we define for the spin rotation

Rn̂(θ) = e−i
θ
~ n̂·S = e−i

θ
2
n̂·σ (11.29)

The rotation operators about the x̂, ŷ, and ŷ axes are then given by the expres-

sions:

Rx(θ) = e−i
θσx

2 (11.30)

Ry(θ) = e−i
θσy

2 (11.31)

Rz(θ) = e−i
θσz

2 (11.32)

11.3.2 CNOT-gate

In the following we want to look at the case of a two qubit system. Let us

consider only the coupling Hamiltonian HJ , which is reasonable since we can

tune two oscillators exactly to the rotating frequencies of the nuclei and thus in

the rotating frame of the oscillators we only have to deal with

HJ = 2π~ J I1
z I

2
z (11.33)

So the evolution of the spin is given by

UJ(t) = e−iHJ t/~ = e−i2πJI
1
z I

2
z t =


e−i

πJt
2 0 0 0

0 ei
πJt
2 0 0

0 0 ei
πJt
2 0

0 0 0 e−i
πJt
2

 (11.34)

We choose a free evolution period of time t = 1
2J

due to J-coupling, which gives

us

UJ
(

1
2J

)
=


e−i

π
4 0 0 0

0 ei
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4

 (11.35)

Combined with some single qubit rotations and an irrelevant global phase we get

the CNOT gate

UCNOT = ei
π
4Rz1(π

2
)Rz2(−π

2
)Rx2(π

2
)UJ( 1

2J
)Ry2(π

2
) (11.36)
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This can be seen from the matrix representation of the rotations

Ry2(π
2
) = 1⊗ e−i

πσy
4 =


1√
2
− 1√

2
0 0

1√
2

1√
2

0 0

0 0 1√
2
− 1√

2

0 0 1√
2

1√
2

 (11.37)

Rx2(π
2
) = 1⊗ e−i

πσx
4 =


1√
2
− i√

2
0 0

− i√
2

1√
2

0 0

0 0 1√
2
− i√

2

0 0 − i√
2

1√
2

 (11.38)

Rz2(−π
2
) = 1⊗ ei

πσz
4 =


ei
π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 e−i
π
4

 (11.39)

Rz1(π
2
) = e−i

πσz
4 ⊗ 1 =


e−i

π
4 0 0 0

0 e−i
π
4 0 0

0 0 ei
π
4 0

0 0 0 ei
π
4

 (11.40)

Finally by simply matrix multiplication we get

UCNOT =


1
2

(
1− eiπ2 i

)
−1

2

(
1 + ei

π
2 i
)

0 0
1
2

(
1− e−iπ2 i

)
1
2

(
1 + e−i

π
2 i
)

0 0

0 0 1
2

(
eiπ − eiπ2 i

)
−1

2

(
eiπ + ei

π
2 i
)

0 0 1
2

(
1− eiπ2 i

)
1
2

(
1 + ei

π
2 i
)


=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(11.41)

11.3.3 Refocusing

We saw that if we apply a RF field at a proper frequency the Hamiltonian is

basically given by HRF , the time evolution is approximately given by

e−i
Ht
~ ≈ e−i

HRF t
~ (11.42)

This allows to perform single qubit operations with excellent fidelity. We define

the 90◦ rotation about the x̂-axis on spin 1 as

Rx1 = e−i
πσx1

4 (11.43)
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and similarly for spin 2. Then we find that the 180◦ rotation R2
x1 has the special

property that

R2
x1 e
−iaσz1tR2

x1 = −eiaσz1t (11.44)

With a being a constant or an operator which is not acting on the z1-component.

This equation can again be proven by simply matrix multiplication. The matrix

representations of the rotations are given by:

R2
x1 = e−i

πσx
2 ⊗ 1 = −


0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

 (11.45)

e−iaσz1t = e−iaσzt ⊗ 1 =


e−iat 0 0 0

0 e−iat 0 0

0 0 eiat 0

0 0 0 eiat

 (11.46)

So by simple multiplication we get

R2
x1 e
−iaσz1tR2

x1 = −


eiat 0 0 0

0 eiat 0 0

0 0 e−iat 0

0 0 0 e−iat

 = −eiaσz1t (11.47)

Which proves Equation 11.44. Because this transformation reverses the time

evolution, except for an irrelevant global phase, in a way that spins that started

together at some point of the Bloch sphere come back to the same point, this is

known as refocusing. And thus the 180◦ pulses are called refocusing pulses. Note

that as long as it contains no operator acting on spin 1, a can be a operator as

well as a constant. That means if we apply refocusing pulses to spin 1 and spin

2 we can remove the coupled time evolution of spins. Refocusing even allows to

remove all time evolution entirely.

11.4 Pseudo-pure states

As seen so far, we are able to realize any unitary transformation on a spin system

using RF pulses. This and the fact that it is possible with high precision, is one

of the most attractive aspects of NRM quantum computing. But we are still left

with the question, how we can deal with the initial state, which is normally a

thermal equilibrium state and thus has a high entropy. In this section so-called
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pseudo-pure states (or also effective pure states) are introduced to show how to

deal with this problem. Therefore different methods are introduced, starting with

temporal averaging.

11.4.1 Temporal averaging

The temporal averaging method uses several experiments with different prepara-

tion steps and the final answer is given by the average over the measurements.

The advantages of this method are that it can be implemented at any tempera-

ture; there is no need for ancillary qubits and it is not necessary to distinguish

subensembles of quantum computers. As our sample is normally at room tem-

perature, the following discussion is limited to the high-temperature methods.

There are three high-temperature methods:

• exhaustive averaging

• labled flip and swap

• randomized flip and swap

The flip and swap methods rely on the inversion symmetry of high-temperature

thermal states of non-interacting particles. Where the labled flip and swap uses

a limited form of ancillary qubits, whereas the randomized flip and swap works

without ancillary qubits, but may need some more experiments. In the following

the first method, exhaustive averaging, is discussed in detail, as it is the most

demonstrative method and shows the key principles of temporal averaging.

Exhaustive averaging This method is in general based on two important

facts: Quantum operations are linear and the measured observables are trace-

less for NMR quantum computation. Assume a two qubit example at room-

temperature; this is generally given by:

ρ0 =


a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

 , a+ b+ c+ d = 1 (11.48)

If our goal is to perform some computation U on |00〉〈00|, the other states, namely

|01〉〈01|, |10〉〈10|, |11〉〈11|, constitute noise and we have to get rid of them. The

idea is now to set up different experiments where we permute the entries of ρ
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that represent the states we want to get rid of. In our general example we use

circuits P1 and P2 to permute the entries b, c, d

ρ1 = P1ρ0P
†
1 =


a 0 0 0

0 c 0 0

0 0 d 0

0 0 0 b

 (11.49)

ρ2 = P2ρ0P
†
2 = P †1ρ0P1 =


a 0 0 0

0 d 0 0

0 0 b 0

0 0 0 c

 (11.50)

This means we have to deal with three experiments, which can be carried out

at different times. Now we take the average over the three resulting density

matrices, which gives us the following expression for ρ, where P0 is simply the

identity:

ρ =
1

3

2∑
k=0

Pkρ0P
†
k =

1

3


3a 0 0 0

0 b+ c+ d 0 0

0 0 b+ c+ d 0

0 0 0 b+ c+ d



=


a 0 0 0

0 1−a
3

0 0

0 0 1−a
3

0

0 0 0 1−a
3


(11.51)

Here, we have used the fact that a+b+c+d = 1. Now we can split this in to two

matrices, where one looks like a pure state and the other one is just a multiple

of the identity.

ρ =
4a− 1

3


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

+
1− a

3
1 (11.52)

As mentioned before, in NMR the observables M fulfil tr(M) = 0, so that we get

for a measurement after performing some unitary transformation U :

tr(U ρU †M) =
4a− 1

3
tr(U |00〉〈00|U †M) +

1− a
3

tr(M)︸ ︷︷ ︸
=0

(11.53)

Although we are dealing with a high entropy mixed state we are able to construct

a pseudo-pure state and thus are able to perform computations on our systems.
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This method works for any initial state that is diagonal in the computational

basis state, but for a n qubit system we need to cyclically permute the non-

ground state in 2n − 1 ways [3]. This means the number of required experiments

grows exponentially and thus, it is only reasonable to implement this method for

a small number of qubits.

11.4.2 Logical labeling

Logical labeling is based on similar considerations, but does not require mul-

tiple experiments to be performed. The fundamental idea is to identify equally

populated states that naturally exist in a thermal ensemble and use unitary trans-

formations to group together these entries of the density matrix and thus form a

uniform background against which a differently populated single pure state can

be distinguished. Then we use some other spins to label this group and produce a

state where we have a few spins in a pure states (qubit spins) which conditioned

on the state of the other spins (ancillary spins). Afterwards one freezes the time

evolution of the ancillary spins using refocusing techniques so that there is no

need to deal with the dynamics of the ancillary spins [4]. For a better under-

standing I give an example of a three spin state. Let us consider the density

matrix of an arbitrary initial three spin state:

ρ = δ1 + αdiag(6, 2, 2, −2, 2, −2, −2, −6) (11.54)

Where δ1 denotes an unobservable background population and α � δ. Now we

use a unitary transformation P to permute the entries and group them together:

ρ′ = PρP † = δ1 + αdiag(6, −2, −2, −2, −6, 2, 2, 2) (11.55)

, where the upper block of this matrix represents a pseudo pure state:
6 0 0 0

0 −2 0 0

0 0 −2 0

0 0 0 −2

 = 8 |00〉〈00| − 2 1 (11.56)

With the help of the label (ancillary spins) we can isolate the signal of the sub-

space of states in order to get the results of a computation performed on the pure

state |00〉〈00|.

11.4.3 Spatial labeling

For the sake of completeness the general idea of spatial labeling is also mentioned.

Basically spatial labeling describes a method where exhaustive averaging is done
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simultaneously, which means, that we partition the ensemble of quantum com-

puters into a number of subensembles and apply different unitary operator to

each of them. Experimentally this can be done, by applying gradient magnetic

fields which vary systematically over a single sample.

11.5 Measurement

The free induction decay is measured, which contains the computational re-

sult (the precession frequency) and readout the response (amplitude and phase).

Mathematically the induced voltage is given by

V (t) = V0 tr
[
e−i

H
~ tρei

H
~ t(iσkx + σky)

]
(11.57)

The voltage V (t) is induced in the RF coils by the rotating magnetization of the

sample. Finally the Fourier transform gives the frequency spectrum as shown

in Figure 11.3. Still there is the question if the ensemble readout can lead a

meaningful result, since the average of random variables does not necessarily give

any relevant information. To get an idea we take a closer look at an example: the

quantum factoring algorithm. Generally it produces a random rational number
c
r
, where c is a random unknown integer and r is the desired result. One performs

first a projective measurement to obtain c
r

and then a classical fraction algorithm

to obtain c with high probability. Then the result is checked by inserting it. But

since c is nearly uniform distributed, the average value
〈
c
r

〉
contains no meaningful

information. To solve this we append any required classical post-processing step

to the quantum computation, which is always possible since a quantum computer

subsumes classical computation. In our example we ask each individual quantum

computer (molecule) to perform a continued fraction algorithm. The result is

then checked on each quantum computer and only those who succeed return an

output. Thus, the average over the ensemble gives us 〈r〉. A similar procedure is

possible for every quantum algorithm.

11.6 Drawbacks

The big advantages of NMR are that the required techniques are already well

known and widely used and that the experiments can be done at room temper-

ature. This is the reason why it was the first realized quantum computer. But

beside that there are still a lot of drawbacks to the idea of NMR quantum com-

puting, which is the reason, why we are still not able to realize a large quantum

computer using NMR. One of the drawbacks is the fact that it is difficult to find
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molecules with more than ≈ 10 spins in them, that still have a strong coupling

between every pair of them [5]. Also the preparation of pseudo-pure states re-

duces the signal exponentially in the number of qubits as the probability for one

component of the density operator scales exponentially namely proportional to

n2−n). It was roughly estimated that the absolute limit on what any practical

NMR computer can handle remains well below 100 qubits by assuming that the

error in an estimated expectation value should be less than 2−2n and require

that with a fixed probability at least one molecule samples at least one solution

[5]. Concluding this, the big problem is that NMR quantum computers are not

arbitrary scalable.

11.7 Conclusion

This chapter gave a general overview over the techniques used to realize NMR

quantum computation. Especially we have answered the question how we can

deal with high entropy mixed states by introducing so called pseudo-pure states.

We have seen some fundamental examples of different methods for obtaining such

a state. We also discussed how we can get a reasonable result out of an ensemble

readout by using classical post-processing steps. And finally we summarized the

rough limitations of NMR quantum computing and concluded that it is not arbi-

trary scalable. Even though many other simple quantum computers were realized

using different techniques, NMR gives a nice illustration of the basic techniques

for quantum computation and provides a testbed for quantum algorithms.
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Chapter 12

The Density-Matrix

Renormalization Group Method

Peter Strassmann
supervisor: Philippe Corboz

S. R. White developed a numerical algorithm called Density-

Matrix Renormalization Group (DMRG) Method, which was

firstly mentioned 1991[1]. This algorithm can be used to effi-

ciently compute the ground state wave function of one dimen-

sional systems. The mean idea of DMRG is an efficient trunca-

tion of the Hilbert space. The approximation of the ground state

is amazingly accurate; for example, the ground-state energy per

site of the S = 1 isotropic antiferromagnetic Heisenberg chain has

been computed up to many digits (E0 = −1.401484038970)[2].

12.1 Introduction

The DMRG method of S. R. White solves one dimensional problems much bet-

ter than other algorithms as Quantum Monte-Carlo, which is limited by the

negative-sign problem1, and other less powerful coupled-cluster methods and se-

ries expansion techniques.

The Hilbert space of a system increases exponentially with size of the system. For

example, a system of L sites with NSite states per site has (NSite)
L basis vectors.

1The negative-sign problem implies that the error bar diverges exponentially with system

size and inverse temperature (∆ ≈ exp(N/T )).
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Therefore, the corresponding total Hilbert space,

Hsystem = H1 ⊗H2 ⊗ . . .⊗HL (12.1)

has the dimension (NSite)
L, where the Hilbert space of each site Hi has the

dimension NSite.

The main goal of the DMRG method is to reduce the Hilbert space by an efficient

truncation, where relevant states are kept and non-relevant states are discarded.

12.1.1 Example Hamiltonians

A typical problem is to find the ground state of a system with interactions, which

is described by a Hamiltonian. These problems are often not exactly solvable.

Even for simplified Hamiltonians, which efficiently describe the system, the prob-

lems are hard to solve. Here are some examples of well known Hamiltonians:

The fermionic Hubbard model

A famous example is the fermionic Hubbard model with on-site repulsion

ĤHubbard = −
∑
〈ij〉,σ

t (c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓. (12.2)

The first term describes the (isotropic) hopping of the electrons between near-

est neighbors. The expression 〈ij〉 means that the summation takes terms into

account, where i and j are nearest neighbors, and the abbreviation h.c. means

the hermitian conjugate of c†iσcjσ. The second term describes the (Coulomb) re-

pulsion of electrons on the same site. The basis on each site can be written as

|0〉 , |↑〉 , |↓〉 , |↑↓〉 and the number of states per site is NSite = 4.

In two dimensions the Hubbard model is even harder to solve. Since 20 years, it

is an open question, if high-temperature superconductors could be described by

the 2 dimensional Hubbard model.

The Heisenberg model

Another example is the Heisenberg model given by

ĤHeisenberg =
∑
〈ij〉

JSiSj (12.3)

which is an effective model of the Hubbard model at half-filling and U
t
� 1, with

J = 4 t
2

U
. This model describes the spin-interaction of nearest neighbors on a
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lattice. For the spin-S = 1
2

chain, the basis on each site can be written as |↑〉 , |↓〉
and the number of states per site is NSite = 2 (the spin-S = 1 chain has three

states per site).

In one dimension, the spin-S = 1 Heisenberg model is gapped but the spin-S = 1
2

model is critical, which implies that it is harder to solve with DMRG (see section

12.5).

12.2 Procedure

There are two variants of the DMRG method, the infinite-system DMRG and the

finite-system DMRG. On one hand, the infinite-system DMRG is the technique,

in which the system size grows at every step. On the other hand, the system size

is fixed in the finite-system DMRG, and it can be used to further improve the

precision.

We use the following notation:

Definition 12.1. I denote a system block with S and an environment block with

E, as illustrated in Fig.12.1, and further:

• the number of states per site with NSite,

• the number of states of the system block S with M (S), and

• the number of states of the environment block E with M (E).

12.2.1 Infinite-system DMRG

The infinite-system DMRG algorithm enlarges the system and the corresponding

environment at every iteration step.

At system length l, a step consist of the following parts:

0. Initialization (only once) of the Hamiltonian in the basis of size M (S) for

the system and M (E) for the environment,

1. Adding one site to each the system and the environment; build the su-

perblock (of dimension N (S)N (E), but this is not performed explicitly for

reasons of efficiency) from the new system S• and the environment •E;

2. Find the new ground state of the Hamiltonian represented in the superblock

(as in Eq. 12.6) by large sparse-matrix diagonalization,
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Figure 12.1: The infinite-system DMRG consists mainly of three parts. Firstly,

adding one site to the system and to the environment. Secondly, forming the

superblock out of the system and the environment with the additional sites.

Thirdly, splitting up the superblock into new system and environment. The

figure is taken from Ref. [3].

3. Determine the eigenbasis and -values of the reduced density matrix ρ̂(S) and

keep the M (S) eigenvectors with the largest eigenvalues,

4. Transform the Hamiltonian in the new basis for the system and environment

of dimension M (S) and M (E) respectively.

Here are further details of the individual steps:

Initialization (Step 0)

The initialization often takes place at small size (i.e. (NSite)
L ≤M (S)), such that

the Hamiltonian is still in an exact basis.

Adding One Site and Build the Superblock (Step 1)

The ground state wave function can be represented in the basis {|m,σ〉} with

m(S) and m(E) as the basis states of the system and environment respectively

and σ(S) and σ(E) the basis states of the added site at system and environment

respectively. Then, the ground state of the combined superblock can be written

as

|ψ〉 =
M(S)∑
m(S)=1

NSite∑
σ(S)=1

M(E)∑
m(E)=1

NSite∑
σ(E)=1

ψm(S)σ(S)m(E)σ(E) |m(S), σ(S)〉 |m(E), σ(E)〉 (12.4)
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or in the combined basis

|ψ〉 =
N(S)∑
i=1

N(E)∑
j=1

ψij |i〉 |j〉 (12.5)

where |i〉 is the basis states of the system and |j〉 is the basis state of the

environment including the new sites and dimensions N (S) = M (S) · NSite and

N (E) = M (E) ·NSite.

Calculation of the New Ground State (Step 2)

The calculation of the ground state is efficiently done by large sparse-matrix di-

agonalization. The Lanczos method and the Jacobi-Davidson method (for linear

eigenvalue problems, see [4]) are algorithms that converge fast to the largest or

smallest eigenvalue of the Hamiltonian Ĥ at high precision. Even the next lower

or higher eigenvalues can be determined with slightly more operations. This is

the most expensive part of the DMRG method where the number of operations

scales with M4 (where M the dimension of the Hilbert space after the trunca-

tion). The number of operations scales with M3 for next neighbor interacting

Hamiltonians because the superblock Hamiltonian decomposes into Hamiltonians

acting on the blocks, on the blocks with neighboring sites and on the two single

sites [3],

Ĥ = ĤS + ĤS• + Ĥ•• + Ĥ•E + ĤE. (12.6)

Basis Truncation (Step 3)

Definition 12.2. The reduced density matrix is defined by

ρ̂(S) := TrE ρ̂ = TrE |ψ〉 〈ψ| (12.7)

depending on the ground state wave function |ψ〉.

This definition means that the reduced density matrix is explicitly

ρ̂(S) =
∑
j′′

〈j′′|

(∑
ij

ψ∗ij |i〉 |j〉
∑
i′j′

ψi′j′ 〈i′| 〈j′|

)
|j′′〉 (12.8)

=
∑
j′′

∑
iji′j′

ψ∗ijψi′j′ |i〉 〈i′| δjj′′δj′j′′ (12.9)

=
∑
ii′j

ψ∗ijψi′j |i〉 〈i′| (12.10)
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and in diagonalized form

ρ̂S =
N(S)∑
α=1

wα |α〉 〈α| . (12.11)

The truncation of the basis of the Hilbert space is performed by taking the eigen-

vectors |α〉 with the M (S) largest eigenvalues wα of the reduced density matrix.

The original ground state wave function (after adding one site to each the system

and the environment) is given by Eq. 12.5. In order to reduce the number of

basis states, the wave function is approximated by

|ψ̃〉 =
M(S)∑
α=1

N(E)∑
j=1

ψ̃αj |α〉 |j〉 (12.12)

with |α〉 a new orthonormal basis with only M (S) < N (S) states

|α〉 :=
N(S)∑
i=1

uαi |i〉 (12.13)

(such that 〈α|α′〉 = δαα′). The Eq. 12.13 can be understood as the basis trans-

formation into the truncated space while keeping the M (S) relevant eigenvectors

with largest eigenvalues of the reduced density matrix in Eq. 12.11.

Definition 12.3. The expression ερ(S) = 1 −
∑M(S)

α=1 wα =
∑N(S)

α>M(S) wα is called

the truncated weight.

The Hilbert space of the environment is truncated in a similar way.

12.2.2 Finite-system DMRG

The finite-system DMRG method further improves the precision of the wave

function obtained from the infinite-system DMRG at fixed system size.

In order to get the additional two sites, it is possible to enlarge the system by

one site and reduce the environment by one site or vice versa. This idea leads

to the finite-system DMRG (see Fig. 12.2). The system size is reduced e.g.

until the system can be solved exactly with (NSite)
L ≤ M (S) states as in the

initialization. The system or environment of size L are taken from the L-th step

in infinite-system DMRG.
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Figure 12.2: The finite-system DMRG works similarly as the infinite-system

DMRG, just the part of adding a site is handled differently to keep the total

system size (together with the environment) constant. The system block size is

shrunk as the environment block is enlarged and after having reached a minimal

system size the growth direction is reversed. The figure is taken from Ref. [3].

12.2.3 Typical simulation parameters

A typical system length is several 100 sites and the number of states to describe

such a system is typically between 100 − 10000 states. These values highly de-

pendent on the problem considered.

12.3 Origin

The DMRG algorithm is based on the ideas of the real-space renormalization;

especially Wilson’s success in solving the Kondo problem[5] and other impurity

problems had large influence on White’s development of the DMRG method. The

real-space renormalization-group method in principle reduces the system in every

step to a certain a number of basis states.

The renormalization-group method, which was responsible for the success of

Wilson, was ineffective for solving Hamiltonians as mentioned in section 12.1.1

(without impurities). In this method, the size of the system A is doubled to a

compound system AA as shown in Fig. 12.3 by keeping the M lowest energy

eigenstates of H per block.

The particle in a box problem illustrates that this method can fail. The new

lowest lying eigenfunction of a compound block AA is not a linear combination

of the eigenstates of the single block A as illustrated by Fig. 12.3. Hence, this

variant of the real-space renormalization group fails to efficiently represent the

ground state of the compound block.

This problem was solved with DMRG, where the density matrix is used to find

the important states.
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Figure 12.3: The continuous line describes lowest lying eigenfunction of the com-

pound block AA and the dashed lines symbolize the eigenfunctions of the single

block A. The figure is taken from Ref. [3].

12.4 Key Idea of DMRG

The key idea of DMRG (as a renormalization group method) is to keep the M (S)

eigenstates of the reduced density matrix with largest weights (eigenvalues) wα.

This choice is optimal as shown in the following section.

12.4.1 Optimizing the Wave Function

Proposition 12.1. The difference |ψ〉 − |ψ̃〉 is minimized in the quadratic norm

with respect to the variables ψ̃αj.

Proof. The wave functions |ψ〉 and |ψ̃〉 are given by Eq. 12.5 and Eq. 12.12

respectively. Assuming real coefficients, we get

‖|ψ〉 − |ψ̃〉‖2 = |〈ψ|ψ〉| − 2<(〈ψ̃|ψ〉) + |〈ψ̃|ψ̃〉| (12.14)

= 1− 2
∑
αij

ψijψ̃αjuαi +
∑
αj

ψ̃2
αj (12.15)

and taking the derivative

∂ψ̃αj‖|ψ〉 − |ψ̃〉‖
2 = ∂ψ̃αj

(
1− 2

∑
αij

ψijψ̃αjuαi +
∑
αj

ψ̃2
αj

)
(12.16)

= −2
∑
i

ψijuαi + 2ψ̃αj
!

= 0 (12.17)
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With the solution of Eq. 12.17 ψ̃αj =
∑

i ψijuαi, the norm can be rewritten as

‖|ψ〉 − |ψ̃〉‖2 = 1−
∑
αii′

uαi
∑
j

ψijψi′j︸ ︷︷ ︸
=:ρ

(S)

ii′

uαi′ (12.18)

The expression ρ
(S)
ii′ is the matrix of the coefficients of the reduced density matrix

ρ̂(S). The density matrix is symmetric positive definite implying that all eigen-

values are positive. Therefore, Eq. 12.18 can be minimized by taking the MS

eigenvectors of ρ
(S)
ii′ with the largest eigenvalues wα for the coefficients uαi. With

this choice, the norm is minimal,

‖|ψ〉 − |ψ̃〉‖2 = 1−
M(S)∑
α=1

wα = ερ(S) (12.19)

where ερ(S) is the truncated weight.

12.4.2 Optimized Expectation Values

The expectation value of a certain operator P̂ (observable on some sites), which

acts only on the system, is given by

〈P̂ 〉 := 〈ψ| P̂ |ψ〉 =
∑
ii′j

ψ∗ij Pii′ ψi′j =
∑
ii′

ρii′ Pii′ = Tr(ρ̂Â) (12.20)

for normalized wave functions ψ using the definition of the reduced density matrix

12.2.

The error on the expectation value due to the truncation from |ψ〉 to |ψ̃〉 is

bounded by

|〈P̂ 〉ψ − 〈P̂ 〉ψ̃| ≤ ερ(S)‖P̂‖, (12.21)

where ‖P̂‖ := maxφ∈H(S) |〈φ| P̂ |φ〉| is the operator norm of P̂ . By minimizing

the truncated weight, the error on the expectation value of the operator P̂ is

minimized too.

12.4.3 Optimized Entanglement

The entanglement entropy of the system is given by

S(ρ̂(S)) := −Tr(ρ̂(S) log(ρ̂(S))) = −
∑
α

wα log(wα).2 (12.22)

2If the weight w1 = 1 and all other weights wα = 0, the entanglement entropy is S = 0, and

the state corresponds to a product state |ψ〉 = |ψ(S)〉 · |ψ(E)〉.
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For numbers w in the range of [0, 1], the term −w log(w) is maximized for w

as large as possible. Therefore, taking the largest weights wα maximize the

entanglement entropy.

For example, a maximally entangled state has wα = 1
M(S) . Therefore, the number

of relevant states scales as M (S) ≈ exp(S) for a given entanglement entropy S.

Schmitt Decomposition

With the Schmitt decomposition, the wave function can be written as

|ψ〉 =
N(S)∑
i

N(E)∑
j

ψij |i〉 |j〉 (12.23)

=
N(S)∑
α=1

λα |Sα〉 |Eα〉 , (12.24)

with the basis transformations

|Sα〉 =
N(S)∑
i=1

Uαi |i〉 (12.25)

|Eα〉 =
N(E)∑
j=1

Vαj |j〉 . (12.26)

The summation over i and j reduces to a sum over α = 1, . . . ,min
(
N (S), N (E)

)
,

where we assume N (S) < N (E) in the following.

The Schmitt decomposition can be obtained from a singular-value decomposition

ψij = UΛV T , where Λ is a diagonal matrix with λα on the diagonal (called

Schmitt coefficients). Using this representation of the wave function, it is possible

to directly calculate the diagonalized reduced density matrix of the system

ˆρ(S) = TrE |ψ〉 〈ψ| (12.27)

=
∑
α

〈Eα| |λα|2 |Sα〉 |Eα〉 〈Sα| 〈Eα| |Eα〉 (12.28)

=
∑
α

|λα|2 |Sα〉 〈Sα| (12.29)

By comparing Eq. 12.29 with Eq. 12.7, one finds that |λα|2 = wα.

The Schmitt coefficients play an essential role for the matrix product state method

(see next chapter).
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12.5 Area Law of Entanglement Entropy

In general for a random state, the entanglement entropy scales with the system

size of a block A in the system,

S(A) ∝ A (12.30)

where S(A) = S(ρ(A)), c.f. Eq. 12.22.

Physical states of local (gapped3) Hamiltonians obey the area law of the entan-

glement entropy

S(A) ∝ ∂A . (12.32)

This is means, that much less states are needed to describe a block. The entan-

glement entropy is given by Eq. 12.29.

Consider a block A of length l in an one dimensional system. The boundary of

this block ∂A is constant, i.e. S(A) = c′ using Eq. 12.32 and the number of

relevant states is consequently

M (S) ≈ exp(S(A)) = exp(c′) = c (12.33)

where c, c′ are constants.4 Thus, with increasing system size the number of states

can be kept constant (for sufficiently large systems).

12.6 Conclusion

The density matrix plays the key role in the DMRG method. This is in contrast

to e.g. Wilson’s approach, which fails for many important systems.

With the area law, the reason for the success of DMRG can be better understood.

The constant size of the relevant subspace to describe a block of arbitrary length

l in an one dimensional system is the reason for the success of DMRG.

3Critical (gapless) systems in one dimension have a logarithmic correction to the area law

S(A) ∝ log(A). In this case, the number of relevant states increases polynomially with system

size,

M (S) = exp(S(A)) ≈ Lp, (12.31)

where p is a (small) constant.
4For a random state in the Hilbert space, the entanglement entropy is extensive and the

number of relevant states grows exponentially

M (S) = exp(S(A)) ≈ exp(L) (12.34)

.
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Chapter 13

Matrix product states and

projected entangled-pair

states

Maximilian Voss
supervisor: Dr. Philippe Corboz

The study of one-dimensional highly correlated quantum lattice

systems has experienced major successes since the development

of very efficient simulation algorithms like the density-matrix

renormalization group method (DMRG). Initially elaborated in

a separate context, matrix product states (MPS) proved to be

an interesting class of states for the study of quantum chains.

They provide an efficient parametrization of the physical state

space and allow for a variational study of the ground state of the

system. As a consequence of the area law of entanglement, the

DMRG/MPS approach becomes ineffective in higher-dimensional

systems. In 2D, a generalization of MPS, the so-called projected

entangled-pair states (PEPS), was developed and basically relies

on a denser tensor network. PEPS are able to handle efficiently

the entanglement related to two-dimensional quantum lattices.
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13.1 Introduction

The description of highly correlated quantum many-body problems on lattices is

a very important problem to solve in quantum physics since these systems are

found in various contexts, particularly in condensed matter physics. Giving a full

analytic description of these systems is nearly impossible and even numerically

they remain hard to study, so that exact solutions only exist for very few simple

cases.

To tackle the problem, simulation algorithms have proved to be very efficient

tools, working where conventional perturbation theory fails. Popular methods

include Wilson’s renormalization group algorithm or the quantum Monte Carlo

method. Yet, the density matrix renormalization group method (DMRG) has

imposed itself as the leading algorithm for the computation of one-dimensional

quantum lattice models. It benefits from a remarkable precision for typical local

and gapped hamiltonians.

Even before the invention of DMRG, matrix product states (MPS) showed inter-

esting properties as a class of quantum states for analytical studies. They were

used in a variety of situations before being associated to DMRG as a powerful

parametrization of the state space associated to quantum chain models. They al-

lowed to give an accurate local description of a system without losing the essential

global quantum non-locality.

We will discuss the structure of an MPS in detail and see how it is used to

compute important quantities of these models like the ground state or the ground

state energy. From there, we will analyze why the DMRG/MPS method gets

ineffective for higher dimensional systems and how we can handle this problem

by generalizing the concept as it was done with the development of projected

entangled-pair states for two-dimensional quantum lattice models.

Figure 13.1: An L-site quantum chain

13.2 Matrix product states (MPS)

We want to solve the problem of describing a one-dimensional lattice of L highly

correlated quantum particles with d-dimensional local state spaces {σi}i=1,...,L.

The key issue with these systems is that the dimension of the Hilbert space H
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grows exponentially with the number of lattice sites (dim H = dL). Finding the

ground state in such a huge space seems like an unsolvable task.

The ansatz we make in this situation is that for physical hamiltonians the amount

of relevant states we have to consider in our search is not that huge. We affirm

that our Hilbert space can be parametrized efficiently so to isolate this sub-

space and then apply DMRG-like algorithms to answer our fundamental ques-

tions about the physics of the system. This efficient parametrization of the state

space is given by matrix product states.

In this section we will discuss the basic tools required for the construction of

an MPS, and we will thoroughly go through the decomposition of an arbitrary

quantum state into an MPS. We will introduce the concept of matrix product

operators (MPO) and see what methods exist to optimize our MPS towards the

ground state we are looking for.

13.2.1 Singular value decomposition

The construction of an MPS is based mostly on a theorem from linear algebra

called singular value decomposition (SVD). This theorem is also notably used to

derive the Schmidt decomposition of an arbitrary quantum state defined on a

bipartite system.

SVD states that for an arbitrary matrix M ∈ CNA×NB we have a decomposition

of the following form [1]:

M = U · S · V † (13.1)

where U , S and V † have following properties:

* U ∈ CNA×min(NA,NB) has orthonormal columns, i.e. U †U = id.

* S ∈ Cmin(NA,NB)×min(NA,NB) is a diagonal matrix with r non-zero entries sa.

The entries sa are called singular values and are positive (sa > 0) and the

number r ≤ min(NA, NB) is the Schmidt rank of M.

* V † ∈ Cmin(NA,NB)×NB has orthonormal rows, i.e. V †V = id.

As we already mentioned, SVD is notably used to derive the Schmidt decomposi-

tion of an arbitrary quantum state defined on a bipartite system AB. The most

general form of such a state writes as:

|ψ〉 =
∑
i,j

ψij|i〉A|j〉B (13.2)
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where {|i〉A} and {|j〉B} denote orthonormal bases for the system parts A and B

respectively. If we see the coefficients ψij as entries of a matrix Ψ, we can then

apply SVD on Ψ and get the following equality:

|ψ〉 =
∑
i,j

r∑
a=1

UiaSaaV
†
aj|i〉A|j〉B

=
r∑

a=1

(∑
i

Uia|i〉A

)
sa

(∑
j

V †aj|j〉B

)

=
r∑

a=1

sa|a〉A|a〉B

Thanks to the orthonormality of U and V †, the new bases |a〉A and |a〉B are also

orthonormal and can be extended to orthonormal bases of A and B. The last line

of the equation shows directly the Schmidt decomposition of the state |ψ〉. This

is a very useful tool since it allows for instance to read off easily the expression

for the reduced density operators for each system part A and B:

ρ̂A = TrB|ψ〉〈ψ| =
r∑

a=1

s2
a|a〉A〈a|A

ρ̂B = TrA|ψ〉〈ψ| =
r∑

a=1

s2
a|a〉B〈a|B

The previous equations reveal a fact which we will use in the following subsections.

In the mixed state defined for example over subsystem A, the pure states with

the highest weights in the reduced density matrix, i.e. the states which are the

most likely to occur, are the ones related to the largest singular values sa[2]. This

will play an important role when we will define a truncation procedure for the

Hilbert space as we build up a numerically manageable MPS.

13.2.2 Decomposition of a general quantum state into

an MPS

We now want to demonstrate how to actually create an MPS starting from an

arbitrary quantum state. We consider again a one-dimensional quantum lat-

tice model with L particles that all admit a d-dimensional local Hilbert space

{σi}i=1,...,L. The most general pure quantum state defined on such a system is

given by:

|ψ〉 =
∑

σ1,σ2,...σL

cσ1...σL|σ1...σL〉 (13.3)
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were we have dL coefficients cσ1...σL in the sum. There are three main ways of

building an MPS. We will discuss just one in detail here. However the other two

constructions are very analog and we will present them shortly afterwards.

The first type of MPS is called left-canonical MPS. The procedure goes as follows:

We see the coefficients c as entries of a row vector of dimension (1×dL). We now

reshape this vector into a matrix Ψσ1,(σ2...σL) of dimension (d × dL−1) where the

entries of the matrix are given by:

Ψσ1,(σ2...σL) = cσ1...σL (13.4)

We now apply SVD on the newly created matrix Ψ. This gives a relation:

cσ1...σL = Ψσ1,(σ2...σL) =

r1∑
a1=1

Uσ1,a1Sa1,a1V
†
a1,(σ2...σL)

≡
r1∑

a1=1

Aσ1
a1
ca1σ2...σL

where in the last step we have multiplied the matrices S and V † together and

reshaped the resulting matrix into a vector ca1σ2...σL . We have also decomposed

the matrix Uσ1,a1 into a collection of d row vectors Aσ1 with entries Aσ1
a1

= Uσ1,a1 .

In the next step, we take our new vector ca1σ2...σL of dimension (1× r1d
L−1) and

reshape it again into a matrix Ψ(a1σ2),(σ3...σL) of dimension (r1d× dL−2) with the

coefficient relation Ψ(a1σ2),(σ3...σL) = ca1σ2...σL . Once again, we apply SVD on

Ψ(a1σ2),(σ3...σL):

cσ1...σL =

r1∑
a1=1

Aσ1
a1

Ψ(a1σ2),(σ3...σL) =

r1∑
a1

r2∑
a2

Aσ1
a1
U(a2σ1),a2 Sa2,a2V

†
a2,(σ3...σL)︸ ︷︷ ︸

≡Ψ(a2σ3),(σ4...σL)

=

r1∑
a1

r2∑
a2

Aσ1
a1
Aσ2
a1,a2

Ψ(a2σ3),(σ4...σL)

where we have again replaced the matrix U by a collection of d matrices Aσ2 with

entries Aσ2
a1,a2

= U(a2σ1),a2 . The end of the procedure now follows from applying

several additional SVD. This results in a decomposition of the following form:

cσ1...σL =
∑

a1,...,aL−1

Aσ1
a1
Aσ2
a1,a2

...AσLaL−1
= Aσ1 ...AσL (13.5)

where in the last step we have have written the coefficient product in the more

compact matrix product form. The initial arbitrary quantum state can now be

represented exactly as a matrix product state:

193



13.2 Matrix product states (MPS)

|ψ〉 =
∑

σ1σ2...σL

Aσ1Aσ2 ...AσL|σ1σ2...σL〉 (13.6)

Figure 13.2: Graphical interpretation of the MPS decomposition. Every step

corresponds to one SVD. The last line represents an entirely decomposed MPS.

As we already mentioned, the MPS decomposition is not unique. We could have

for example started our decomposition from the right end of the chain instead of

initiating it from the left. This is known as a right-canonical MPS. It is technically

almost identical to our previous construction. In the first step, we simply reshape

our initial state vector cσ1...σL into a matrix Ψ of dimension (dL−1 × d) instead

of (d × dL−1). Then, after having applied SVD to Ψ, we isolate the V † instead

of the U matrices and we decompose them into a set of d B matrices in a fully

analog way to left-canonical MPS. We will not go further into technical details

and simply give the resulting MPS:

|ψ〉 =
∑

σ1σ2...σL

Bσ1Bσ2 ...BσL|σ1σ2...σL〉 (13.7)

The fundamental difference between these two decomposition is related to their

orthonormality. Due to the properties of the SVD matrices U and V †, we have

following identities for our A and B matrices:

194



Matrix product states and projected entangled-pair states
[Maximilian Voss]

∑
σl

Aσl†Aσl = id
∑
σl

BσlBσl† = id (13.8)

Because of these properties, A-matrices are referred to as left-normalized whereas

the B-matrices are right-normalized. This has major consequences on the DMRG

approach of our system. If we split our system up so to have a bipartite system

which comprises lattice sites 1 to l in subsystem A and sites l+1 to L in subsystem

B, we want to build an MPS which is orthogonal on both subsystems. Our

approach is then to undertake a left-canonical decomposition from sites 1 to l

and a right-canonical decomposition from sites L to l + 1. The final state is

called mixed-canonical MPS and is written as:

|ψ〉 =
∑

σ1σ2...σL

Aσ1 ...AσlSBσl+1 ...BσL|σ1σ2...σL〉 (13.9)

were S is the diagonal matrix from the SVD. If we now introduce vectors:

|al〉A =
∑
σ1...σl

(Aσ1 ...Aσl)1,al |σ1...σl〉

|al〉b =
∑

σl+1...σL

(Bσl+1 ...BσL)al,1|σl+1...σL〉

Then our state ψ can be rewritten in the form:

|ψ〉 =
∑
al

sa|al〉A|al〉B (13.10)

where the coefficients sa denote the diagonal entries of our singular value matrix

S from the mixed-canonical representation. This last form of the state is exactly

the Schmidt decomposition of ψ, which fulfills the requirement of providing an

orthonormal basis on A and B respectively.

13.2.3 Compression of a matrix product state

Let us consider again a mixed-canonical MPS as derived in (1.9):

|ψ〉 =
∑

σ1σ2...σL

Aσ1 ...AσlSBσl+1 ...BσL|σ1σ2...σL〉 (13.11)

If we look at the matrices in our MPS, we see that their respective dimensions

still increase exponentially. Counting reveals that the highest-dimensional matrix
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of the decomposition could be of maximum dimension (dL/2 × dL/2−1), which

cannot be handled numerically. Therefore, to be able to actually do computation

with our state, we need to reduce this dimension by somehow diminishing the

dimension of the considered state space. This procedure is called truncation

of the Hilbert space. We give an overview of how this truncation is actually

implemented. The trick is to define some bond dimension D on our system. The

number D basically describes the maximum number of degrees of freedom of a

subsystem we allow in our state representation.

Let us now consider we have an MPS describing block A with a bond dimension

of D. If we now add a site to the decomposition (l→ l+ 1), the total associated

state space will also grow by a factor of d. If the new Hilbert space now has a

dimension dH > D we will have to truncate the state space. To do this, we look

at our SVD decomposition and retain only the D largest singular value sa in the

matrix S and trace out all other entries so to effectively have a new S matrix of

dimensions (D×D). In the same time, we retain only the D first columns (resp.

rows) in the U (V †) matrix.

The argument which motivates that we only keep the states with the largest sin-

gular values is related to the previously discussed fact about the reduced density

matrix (RDM). We have seen that the states which have the highest weights in

the RDM (i.e those who are the more likely to occur) are exactly those with the

largest singular values.

13.2.4 Matrix product operators

In a complete analog to the discussion about quantum state, we also want to

convert operators into a matrix product form so to efficiently operate on MPS.

This is achieved by building so-called matrix product operators (MPO). They

have the form

Ô =
∑

σ1...σL,σ
′
1...σ

′
L

W σ1σ′1 ...W σLσ
′
L |σ1...σL〉︸ ︷︷ ︸

=:|σ〉

〈σ′1...σ′L|︸ ︷︷ ︸
=:〈σ′|

(13.12)

so that we can write coefficients 〈σ|Ô|σ′〉 as

〈σ|Ô|σ′〉 = W σ1σ′1W σ2σ′2 ...W σL−1σL−1′W σLσ
′
L (13.13)

The W σlσ
′
l in the previous equations denote matrices just in the same sense as

Mσl did in an MPS. The difference is now that every matrix is indexed by two

coefficients instead of one. The coefficients denote respectively the physical index
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Figure 13.3: Graphical representation of an MPO. Every tensor now has two

physical indexes σi and σ′i, respectively denoting the ingoing and the outgoing

state sites.

of the ingoing state (σl) and the one of the outgoing state (σ′l).

There are a two important facts concerning MPO. First, any operator can be

brought into an MPO form. This is due to following identity:

Ô =
∑

σ1...σL,σ
′
1...σ

′
L

c(σ1...σL),(σ′1...σ
′
L)|σ1...σL〉〈σ′1...σ′L|

=
∑

σ1...σL,σ
′
1...σ

′
L

c(σ1σ′1)...(σLσ
′
L)|σ1...σL〉〈σ′1...σ′L|

where we can now decompose the last line in the exact same way as we did for

MPS, the double index σiσ
′
i taking the role of the index σi in the MPS. The other

important property of MPO is that they leave the form of an MPS invariant.

This means that when one applies an MPO Ô on an MPS |ψ〉 as in

Ô|ψ〉 = |φ〉 (13.14)

the resulting state |φ〉 will be a new MPS with a larger bond dimension.

13.2.5 Finding ground states using MPS

What we did until now was to build an efficient representation for the state vector

|ψ〉 using MPS decomposition. The actual goal of this procedure is to be able

to compute ground states of very complex highly correlated systems, given by

specific hamiltonians Ĥ. In order to do this, we want to optimize our MPS |ψ〉
so to minimize the quantity

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

. (13.15)

which is the energy of the system. There are several optimization methods which

are used to minimize this quantity and the most well known are the variational
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searches using renormalization methods like DMRG and imaginary time evolu-

tion. We will briefly introduce both of these methods here.

Iterative ground state search

The idea of this first method is to extremize the quantity

〈ψ|Ĥ|ψ〉 − λ 〈ψ|ψ〉 (13.16)

so that, in the end, ψ will converge towards the desired ground state and λ

towards the ground state energy. This is far from being a trivial computation.

Indeed, since the all the matrices in the MPS are variables and as they appear

in the form of products, this is a highly non-linear optimization problem. The

idea will be to optimize every matrix separately one after the other by solving a

eigenvalue problem in order to lower their respective energy contribution. This

is done using the DMRG algorithm which comprises a series of sweeping through

the system from one site to the other and repeating the optimization procedure

until the MPS converges towards the desired ground state.

Imaginary time evolution

A second popular method for the computation of ground states is the so-called

imaginary time evolution. The idea is to act with the operator e−βĤ (β = 1
kBT

)

on an initial state ψ so that it (hopefully) converges like

e−βĤ |ψ〉 β→∞−→ |ψ0〉 (13.17)

where ψ0 is the ground state of the system. The problem we encounter here

is that we struggle to write the operator e−βĤ as an MPO (i.e. as a product of

matrices). If we can write the hamiltonian Ĥ =
∑

i ĥi as a sum of local operators,

a naive approach to this would be to write

e−βĤ = e−βĥ1e−βĥ2 ....e−βĥL−1 +O(β2) (13.18)

which contains an error since we did not consider that the ĥi do not com-

mute. An efficient solution to this issue was found with the development of

the Trotter-Suzuki decomposition. This decomposition states that if we discretize

time β = Nτ with τ → 0 and N → ∞, we can make the valid approximation

that τ [ĥi, ĥi+1] ≈ 0 holds for small time scales τ . Thereby we approximate

e−ĤτN =
(
e−τĤ

)N
=
(
e−τ

∑
i ĥi
)N
≈

(∏
i

e−τĥi

)N

(13.19)
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and the resulting operator is a product of MPO with which we can operate on

our initial MPS. One open question concerns the choice of the initial state ψ.

Typically one could rely on an educated guess which would usually converge.

Even if the initial state is chosen nearly randomly, it will usually converge if it

has a finite overlap with the ground state. However there is no guarantee for this

convergence. Yet, both methods introduced here have had considerable success

in the past and continue to be widely used for ground state computations.

13.3 Projected-entangled pair states (PEPS)

MPS has been very successful in past attempts to efficiently describe one-dimensional

lattice systems. However, this efficiency decreases dramatically for higher-dimensional

systems. The explanation to this phenomena is closely linked to the area law of

entanglement, which gives a relation between the entanglement entropy of a sys-

tem and its dimensionality. This problem was solved for two-dimensional systems

by introducing projected entangled-pair states, which are basically a generaliza-

tion of MPS for two-dimensional systems.

13.3.1 Area law of entanglement

Entanglement is the crucial factor that makes quantum systems behave differ-

ently from classical systems. When describing such a system, knowing how much

entanglement is present in it indicates the amount of resources required to actu-

ally be able to represent it. The entanglement entropy can be computed using

for example by the von Neumann entropy, given by the formula

S(ρ) = −Tr(ρlnρ) = −
∑
a

λalog(λa) (13.20)

where ρ has a spectral decomposition as given in section 13.2.1 and λa = s2
a. If

we are in a maximally entangled system with d relevant states, we know that for

every state: λa = λ = 1/d. Thereby the entropy will have a maximum value:

S(ρ) = −
∑
a

λalog(λa) = −
d∑
a=1

d−1log(d−1) = log(d) (13.21)

In an arbitrary n-dimensional quantum system (L×L× ...×L), the entanglement

entropy scales like the volume of the system[3].

S ∝ Ln (13.22)
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The area law now states that for an n-dimensional quantum lattice model defined

by a local and gapped hamiltonian Ĥ, the entanglement entropy of a lattice block

will actually scale like the size of the boundary of the block.

S ∝ Ln−1 (13.23)

This has important consequences. For example, for n = 1 the theorem states

that for sufficiently long chains, the entanglement entropy and the number of

relevant states are constant and do not depend on the number of lattice sites:

log(d) = S ∝ Ln−1 = L0 =⇒ d ∝ exp(L0) ≡ const. (13.24)

For n = 2, the entanglement entropy does not scale like the surface of the spin

block but only like the sidelength of the block. Therefore the number of relevant

states will scale like:

log(d) = S ∝ Ln−1 = L⇒ d ∝ exp(L) (13.25)

13.3.2 MPS for two-dimensional systems

The main reason why MPS is not efficient in higher dimensions is directly linked

to the area law. Indeed, we have seen that for example in 2 dimensions, the

entanglement scales like the sidelength of a spin block. If we apply an MPS on a

2D lattice, the tensor network looks like in Figure 13.4.

If we break such a lattice into two blocks in the spirit of DMRG, we see that

the whole entanglement of the system is carried by one single tensor (red line in

the sketch). Yet, since this tensor has bond dimension D, it will not be able to

contain the number of relevant states necessary to describe the lattice efficiently

(d ∝ exp(L)), particularly as the system grows in size. Since MPS suffered these

limitations in two-dimensional computations, a generalization of the method, the

so-called projected entangled-pair states, was developed to allow a more efficient

parametrization of these systems.

13.3.3 Projected entangled-pair states

The idea of PEPS is to modify the MPS structure of the tensor network on the

two-dimensional lattice so to ensure that, as the system grows in size, we still

have enough degrees of freedom in our decomposition to ensure that the total

entanglement of the system can be handled efficiently. We will not go further
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Figure 13.4: An MPS tensor network on a two-dimensional lattice. The green

and red lines describe the degrees of freedom linking the respective sites. The

red line denotes the tensor connecting blocks A and B.

into technical details, but simply give the graphical representation of the final

tensor network in Figure 13.5.

As we can see, every site is connected to its four nearest neighbors via a link

representing D degrees of freedom. If we now split the system again into two

blocks A and B, the entanglement entropy will again scale proportionally to the

sidelength L of the block, according to the area law:

S ∝ L. (13.26)

However, thanks to our new PEPS decomposition, we see that the amount of

degrees of freedom between the blocks Dconnect = DL scales like the number of

relevant states d needed to describe our system. The scaling of d is predicted by

the area law, as we have seen in equation 13.25 for two-dimensional systems:

d ∝ exp(L) ∝ DL ∝ Dconnect ⇒ Dconnect ∝ d (13.27)

13.4 Conclusion

In a combination with the density matrix renormalization group algorithm, ma-

trix product states play a leading role in the efficient representation of one-
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Figure 13.5: Tensor network on a 2-dimensional lattice according to the PEPS de-

composition. All the tensors are connected via D degrees of freedom represented

by the green and blue lines. As the system is cut into two subsystems A & B,

the amount of available degrees of freedom Dconnect connecting the blocks scales

like DL (as represented by the number of blue lines), leading to an entanglement

entropy S ∝ L .

dimensional quantum lattice models. They allow to parametrize the associated

state space easily using the decomposition algorithm presented in section 13.2.2.

Using matrix product operators, we can apply different optimization methods on

an initial MPS to hopefully make in converge towards the ground state of the

system. Computing ground states and ground states energies is far from being

a trivial achievement for these systems whose Hilbert space grows exponentially

with the number of lattice sites.

In two dimensions, we have seen that MPS becomes an ineffective approach,

particularly as the considered lattices grow in size. To overcome this issue, we

can build a generalization of the method, the projected entangled-pair states,

which allows for an efficient representation of two-dimensional lattice models.

The fact that we are able to produce such efficient decomposition is due to the

presence of an area law of entanglement for quantum lattice systems defined by

a physical hamiltonian. This law states that, for these systems, the entangle-

ment between two subsystems (also called ”blocks”) will scale like the size of

the boundary of the block, as opposed to general quantum systems where the
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entanglement would scale like the volume of an analog block. This property al-

lows to build efficient parametrization for complex highly correlated quantum

many-body problems on lattices.

203



13.4 Conclusion

204



Bibliography
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Chapter 14

N-Representability Problem:

Pauli Principle and Beyond

Dario Schoebi
supervisor: Roger Colbeck

The N -representability problem asks about the correlation be-

tween a joint state of N fermions and its reduced states, thus

can be considered a special case of the quantum marginal prob-

lem. Starting with the Pauli principle, a statement about the

skew-symmetry of a fermionic wave function, this paper presents

a way to find such constraints beyond the Pauli principle for the

case of the one point N -representability problem, illustrated by a

system of three fermions of rank six. It turns out, that one point

N -representability is solvable and can be reduced to a finite set

of linear inequalities in terms of the spectra of joint and reduced

state.

14.1 Introduction

In the mid 90s, a problem that was known from 30 years earlier was included in

the list of the ten most prominent research challenges in quantum history - the

N-representablity problem [1].

The underlying physical problem stems from calculating energy states for fermionic

systems like an atom, with pairwise interaction. It turns out, that the energy of

such a system depends only on the two point reduced density matrix (RDM) and

the ground state energy in particular is given by
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E0 =

(
N

2

)
min

ρ(2)=RDM
Tr(H(2)ρ(2)), (14.1)

where H(2) is the reduced two particle Hamiltonian and ρ(2) the two particle

RDM. Therefore, knowing what conditions the two point RDM should satisfy,

would essentially allow the calculation of almost all properties of matter [1].

This is what the quantum maginal problem (QMP) is about and one can there-

fore think of the N -representability problem as the QMP in the setting of N

fermions. It turns out however, that the two point N -representability problem

is QMA complete [2] and therefore, discussions about overlapping reduced states

are beyond the scope of this paper, for both QMP and N -representability prob-

lem.

The following section 1.2 contains a brief review of the quantum marginal prob-

lem. Section 1.3 then introduces the one point N -representability problem, the

Pauli principle and how it constrains the amount of possible states of a system

of N fermions and a way to construct a possible basis of antisymmetric wave

functions, using natural spin orbitals. Section 1.3.4 then goes through one of the

very few completely solved cases - the condition on the one-matrix for three-body

fermion wavefunction with one-rank equal to six, ψ ∈ ∧3H6, following Borland

and Dennis [3]. Finally, Section 1.3.5 refers to a paper by Klyachko, who has

found a general solution for the one point N -representability problem, which

motivates, that the constraints can be expressed through a finite set of linear

inequalties in terms of the spectra of joint and reduces state respectively[1].

14.2 Quantum Marginal Problem

The quantum marginal problem (QMP) is about the relation between a joint

state Ψ ∈ H and its reduced states ρj, j ∈ J . In plain words, this could be stated

as follows.

Say one is given a couple of matrices ρA, ρB, ρC , ..., then what are possible joint

(mixed) states ρ, such that the set of matrices are actually reduced density ma-

trices of said ρ. So in a sense, the QMP asks about the existence of a mixed state

ρI of composite system

HI =
⊗

i∈I Hi

with given reduced states ρJ for some J ⊂ I[1].

One of the most trivial cases is, where there is no constraint at all on ρ. Then
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one can simply take the tensor product of all reduced states to get a valid state.

But given even little constraints on the upperlying state, say it’s supposed to be

pure, then the reduced states might be correlated very strongly.

example

Consider a general pure state Ψ of a two component system

Ψ =
∑

i,j ψijαi ⊗ βj ∈ HA ⊗HB,

where the coefficients ψij can be thought of as matrix coefficients, with orthonor-

mal basis αi, βj of HA,HB. Then, the reduced density matrices of Ψ are given

by

ρA = ψ†ψ, ρB = ψψ†,

which leads to isospectrality

SpecρA = SpecρB,

exept additional zeros if dimHA 6= dimHB. This implies the so-called Schmid-

decomposition

Ψ =
∑

i

√
λiψ

A
i ⊗ ψBi ,

with ψAi , ψ
B
i being eigenvectors of ρA, ρB with the same eigenvalue λi. This shows,

that the reduced states of a bipartite system are strongly correlated.

14.3 N-representability problem

Based on the QMP one could ask himself, what happened if there were further

constraints on the joint state ψ. Such a constraint could be given by natural

symmetries, e.g. permutation symmetries for identical particles. In the setting

of N fermions, the Pauli principle states that the state space is skew symmetric.

Using second quantization formalism, the one point RDM is of the form

ρ(1) = 〈ψ|a†iaj|ψ〉. (14.2)

Following chemist notation, we use the normalization Trρ(1) = N and Trρ = 1.
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14.3.1 The Pauli principle

There are two ways how to think of the Pauli principle, discovered in 1925 and

1926 respectively[4].

The Pauli exclusion principle states, that no two identical particles could occupy

the same quantum space at the same time.

Let |ψ〉N ∈ H⊗N be the state of an N -electron system and ρi be the reduced

density matrix of the ith electron. The probability of the ith electron to be in

state |ψ〉 is given by 〈ψ|ρi|ψ〉. The electron density matrix ρ of a system of N

electrons is defines as ρ =
∑

i ρi, thus 〈ψ|ρ|ψ〉 is the number of electrons in the

state |ψ〉. But due to Pauli exclusion principle, this number has to be smaller or

equal to 1, which binds the eigenvalues of ρi by 1, 0 ≤ λi ≤ 1, λi ∈ Specρi.

An alternative version was given one year later, which implied the skew symmetry

of a fermionic wave function. Consider again a setting of N identical particles.

As they are identical, their corresponding wave function |ψ〉N ∈ H⊗N must be

invariant under permutation of two particles. Such permutation can be described

mathematically by an element of the symmetric group π ∈ SN ,

π|ψ〉 = eiφ|ψ〉.

This gives a onedimensional representation of the symmetric group SN , and as

there are only two onedimensional representations of SN for any N , namely iden-

tity and signum, it has to be either one of them. In the end, the identity and

symmetric tensors correspond to bosons, whereas latter representation and anti

symmetric tensors correspond to fermions [4].

Given these conclusions, the resulting question is:

What is the constraint on the one point reduced density matrix ρ(1) beyond the

Pauli principle?

14.3.2 Natural spin orbitals

By knowing that the Pauli principle constrains all possible joint states |ψ〉 to be

anti symmetric, which will be denoted by |ψ〉 ∈ ∧NHr, where N is the number of

fermions and r the dimension of the Hilbertspace of a single fermion, it would be

reasonable to have an anti symmetric basis for ∧NHr, to describe possible joint

wave functions.
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There is a common way to construct such a basis, using so called Slater determi-

nants. For a genereal r and N , r ≥ N , the basis vectors are given by

|i, j, ...p〉 =

∣∣∣∣∣∣∣∣∣
φi(1) φi(2) · · · φi(N)

φj(1) φj(2) · · · φj(N)
...

...
. . .

...

φp(1) φp(2) · · · φp(N)

∣∣∣∣∣∣∣∣∣ , (14.3)

with {i, j, ...p} ∈ {1, 2, ..., r}, i ≤ j ≤ ... ≤ p, thus any state ψ can be written in

terms of these Slater determinants as

ψ(1, 2, ..., N) =
∑
i

∑
j

...
∑
p

aij...pφi(1)φj(2)...φp(N). (14.4)

The functions φk are the basis vectors of Hr and the natural numbers i represent

the spin and orbital function of the ith particle.

Eventhough this would essentially be a valid representation of ψ, it’s easy to

see that the number of Slater determinants needed is given by
(
r
N

)
= r!

N !(r−N)!
,

which grows very fast for increasing r and fixed N . This is a valid argument, as

each fermion in an atom potentially lives in an infinite dimensional Hilbertspace.

Therefore, the question is, if there is a better choice of basis ψ1, ψ2, ..., ψr for the

one particle Hilbertspace Hr, such that some of the coefficients in (14.4) become

zero and the answer is - sometimes. These basis vectors are called natural spin

orbitals.

Given a particular state ψ ∈ H⊗N , the natural spin orbitals are the eigenfunc-

tions of the one point RDM. By expressing the old basis in terms of these natural

spin orbitals might reduce the number of non-zero coefficients and therefore the

number of Slater determinants needed to express ψ. Using this method, Borland

and Dennis found reductions for the cases where N = 2, where the eigenvalues

of the one-body reduced matrix occur in degenerate pairs, the case N = 3 with

M = 6 as well as the case where M = N + 2[5].

14.3.3 The N+2 spin-orbital approximation to the N-

body antisymmetric wave function

Eventhough the idea of natural spin orbitals is simple, it might still be non intu-

itive how a reduction in slater determinants could occur, which would also imply

further restrictions beyond the Pauli principle. This can be illustrated using the

211



14.3 N-representability problem

example where M = N + 2, following the idea of the same named paper of Bell,

Borland and Dennis[5].

A wave function describing a joint state Ψ ∈ ∧NHN+2 can be written either in

terms of the Slater determinants as in equation (14.4), or using second quantiza-

tion formalism, namely

|Ψ〉 =
∑
i

∑
j

dijaiaj|N + 2〉 (14.5)

with |N + 2〉 being an N + 2 fermionic state represented by a single slater deter-

minant and ai, i ∈ {1, 2, ..., N + 2} the destruction operator of a fermion in state

φi. This can be written as a matrix multiplication

|Ψ〉 = ATDA|N + 2〉, (14.6)

where A is the column matrix with entries ai and D the skew symmetric matrix

with coefficients dij of order N + 2.

Because of the skew symmetry of D, one can find a unitary matrix Q, such that

D′ = QTDQ (14.7)

is a matrix of block diagonal structure, where the kth block is of the form(
0 1

2
µk

−1
2
µk 0

)
. (14.8)

By denoting the column matrix QHA by A′, the wave function Ψ is finally of the

form

|Ψ〉 =
∑
k

1

2
µk(a

′
2k−1a

′
2k − a′2ka′2k−1) =

∑
k

µka
′
2k−1a

′
2k (14.9)

using the anti commutation relation for fermions in the last step. Here, the

summation of k only runs from 1 to 1
2
N + 1 and therefore, the expected amount

of
(
N+2
N

)
= (N + 1)(N + 2) slater determinants is significantly reduced. It is yet

to show, that the states ψr =
∑

i q
∗
irφi just happen to be the natural spin orbitals,

thus the one-point reduced density matrix defined in (14.2) is diagonal in terms

of this basis ψ. This can bee seen by calculating the one-body density matrix in

terms of these potential natural spin orbitals

Brs = 〈Ψ|a′†r a′s|Ψ〉, (14.10)

which gives
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Brs =
∑
k

∑
l

µ∗kµl〈N + 2|a′†2ka
′†
2k−1a

′†
r a
′
sa
′
2l−1a

′
2l|N + 2〉. (14.11)

But this expression is only non-zero, if the creation operators recreate the same

orbitals destroyed by the destruction operators. This is only possible for l = k,

thus r = s and therefore, B is diagonal.

So it has been shown, that in this natural spin orbital representation of Ψ, the

one point RDM is diagonal and the number of slater determinants is reduced in

this particular case.

Finally, in this representation, the eigenvalues λi of the one-point RDM are given

by

λi = N !
∑
k⊃i

|Ak|2, (14.12)

where Ak is the coefficient Aij...p from (14.4) and the summation is over all con-

figurations k which include the ith orbital.

14.3.4 The conditions on the one-matrix for three-body

fermion wavefunctions with one-rank equal to

six

When Borland and Dennis wrote their paper on a pure, joint state Ψ ∈ ∧3H6

of three fermions, each living in a six-dimensional Hilbertspace in 1971, they

justified studying such a special case by the difficulty but importance of the

general N -representability problem [3].

Nonetheless, this specific problem can be used to illustrate, how one can now

derive the relation between the joint state and the one-point RDM, thus solve

the one representability problem.

In their paper, Borland and Dennis refered to analytical results by Ruskai and

Kingley, proving that in terms of the natural spin orbitals, the only non-zero

configurations coefficients where A123, A145, A246, A356, A124, A135, A236 and A456,

where Aijk denotes the coefficient corresponding to the |ijk〉th Slater determinant

as in (14.3). So in this particular case, the number of Slater determinants can be

reduced from expected 20, down to a mere 8 basis vectors.

First, consider the case where the wavefunction only consists of the four normal-

ized slater determinants with coefficients A123, A145, A246 and A356, in the process

denoted by α1, α2, α3 and α4.
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Since we are using natural spin orbital, equation (14.12) must hold, which gives,

together with the normalization condition, the following equations:

λ1 = |α1|2 + |α2|2 (14.13)

λ2 = |α1|2 + |α3|2 (14.14)

λ3 = |α1|2 + |α4|2 (14.15)

λ4 = |α2|2 + |α3|2 (14.16)

λ5 = |α2|2 + |α4|2 (14.17)

λ6 = |α3|2 + |α4|2 (14.18)

1 = |α1|2 + |α2|2 + |α3|2 + |α4|2. (14.19)

Combining these equations lead to

λ1 + λ6 = 1 (14.20)

λ2 + λ5 = 1 (14.21)

λ3 + λ4 = 1 (14.22)

Without loss of generality, one can assume that the eigenvalues are in decreasing

order, λi ≥ λi+1. Furthermore, one can solve the first six equations for |αi|2,

leading to the equations

2|α1|2 = λ1 + λ2 + λ3 − 1 = λ1 + λ2 − λ4 (14.23)

2|α2|2 = λ1 + λ4 + λ5 − 1 = λ1 + λ5 − λ3 (14.24)

2|α3|2 = λ2 + λ4 + λ6 − 1 = λ5 + λ6 − λ5 (14.25)

2|α4|2 = λ3 + λ5 + λ6 − 1 = λ5 + λ6 − λ4 (14.26)

where the first three equation are only self concistency conditions with the or-

dering of the eigenvalues, but the last one is non trivial and contributes another

condition.

All together, the eigenvalues for this more specific problem satisfy

λ1 + λ6 = 1 (14.27)

λ2 + λ5 = 1 (14.28)

λ3 + λ4 = 1 (14.29)

λ5 + λ6 ≥ λ4 (14.30)

λi ≥ 0 (14.31)

214



N-representability problem [Dario Schoebi]

with ordering, such that λi ≥ λi+1.

However, these conditions have been derived using a wavefunction consisting of

only four Slater determinants, thus it is yet to show, that these sufficient condi-

tions are also necessary. It turns out, that by using the same argument, the same

conditions can be derived using all eight Slater determinants [3], which proves

that the just found conditions are both sufficient and necessary.

So to check a given 6× 6 matrix for its three-representability, one would have to

find the eigenvalues, and check for the inequalities.

14.3.5 General results

The result from the previous sections outlines a way how to derive constraints for

a very specific problem. As mentioned above however, the extension onto higher

dimensions (higher r values) becomes very difficult as the number of free param-

eters (i.e. number of slater determinants) increases very quickly and therefore

asks for different approaches.

For the one-point RDM, a general solution is presented by Klyachko [1]

For a mixed state ρ of an N -fermionic system of rank r, the constraints on the

one-point RDM are given by the following equalities in terms of the spectra∑
i

aiλv(i) ≤
∑
j

(∧N)jνω(j), (14.32)

with ν ∈ Sr and ω ∈ S( rN) being permutions and a so called test spectra. These

test spectra statisfy the conditions a : a1 ≥ a2 ≥ ... ≥ ar,
∑

i ai = 0 and could

give the intuition, that there is an infinite number of choices for a and therefore

infinitely many inequalities. However, it is rather obvious, that there are linear

combinations of test spectra, which lead to the same inequalities, thus one can

define a finite number of equivalence classes for a.

All together, this formula motivates the observation, that all contraints are linear

in terms of the respective spectra of joint and one-point reduced state or likewise,

that all the eigenvalues lie within a multidimensional polytope.

14.4 Summary

We have now seen how to derive relations on the spectra of the one body RDM, in

particular for the problem where N = 3, M = 6. By using natural spin orbitals,

there can be a reduction in the number of non-zero coefficients for the Slater

determinants. The possibility of such a reduction has been shown explicitly for
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the case where M = N + 2. However, after some research on further settings

where N = 3, M = 7 and M = N+3 with N = 4, Borland and Dennis concluded

[6], that it seemed unlikely that there existed further cases, where reduction was

possible. But even without fewer non-zero coefficients, the discussion above is

still valid and Borland and Dennis examined other cases for N = 3, M = 7; N =

4, M = 7 and N = 4, M = 8 and found all sufficient conditions using numerical

research, and expect them to be necessary as well.

Criterions for pure N -representability for two particles or two holes are also well

understood, but even the case for a system ∧2H5 leads to a set of 522 independent

inequalities. More modern methods are representation theoretical approaches and

at the time it is understood, that the eigenvalues lie within a multidimensional

polytope. Klyachko seems to have even found a general solution for the mixed

one-point representability problem [1]. On the other hand, overlapping systems

or two-point representability is still even less understood and was declared to be

QMA complete [2].
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Chapter 15

N-Representability

Problem:Semidefinite

constraints

Abas Jusufi
supervisor: Roger Colbeck

The ground state energy of a many-electron system is deter-

mined. The groundstate problem as an exponentially large eigen-

value problem is called FCI. FCI can be solved only for very small

systems. There are two traditional approximations of FCI: SDCI

and CCSD. These two approximations need only a few seconds to

solve the groundstate problem. The groundstate problem is writ-

ten as a semidefinite programming problem where the full density

matrix is needed. The full density matrix is not suitable as a com-

ponent of an efficient computation method. Therefore we con-

sider reduced density matrices. The groundstate problem writ-

ten as a semidefinite programming problem with reduced density

matrices requires the N-representability. This N-representability

condition requires the reconstruction of the large full density ma-

trix. In a SDP-relaxation there have been found conditions for

the N-representability which don’t require the reconstruction of

the full density matrix.

15.1 Electronic structure problem

Note added: This talk is based on [1] and [2].
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15.2 Electronic structure problem as SDP problem

The electronic structure problem is to determine the energies of a many-electron

system in a given external potential. In the presentation we consider only the

ground state energy. For a N-electron system this ground state energy is the

smallest eigenvalue of the Hamiltonian.

Because we have electrons, wich are fermions, the N-electron wavefunction has

to be totally antisymmetric under the interchange of any pair of electrons.

We can discretize the many-electron space of wave functions by discretizing the

single-electron space of wave functions. We take for this single-electron basis

functions ψi(i = 1, 2, .., r) where r is the basis size. Under the discretization we

get a discrete Hamiltonian H which can be written as a matrix. The discretized

ground state problem is then H~c = E0~c where ~c is the discretized wavefunction

and E0 is the minimum eigenvalue.

The discretized wavefunction ~c has to be antisymmetric. Therefore we can reduze

the dimension of the wavefunction to r!
N !(r−N)!

.

15.1.1 FCI,SDCI,CCSD

This discrete formulation of the electronic structure problem as an exponentially

large eigenvalue problem is called full configuration interaction (FCI). It is im-

portant to say that FCI can be solved only for very small systems. There are two

approximations of FCI, which reduce the basis, they are called SDCI and CCSD.

15.2 Electronic structure problem as SDP prob-

lem

The SDP-problem is a subfield of a convex optimization. The semidefinite pro-

gramming deals with optimization problems of the type

min (i) < C,X >

X

subject to (ii) < Ai, X >≤ bi i = 1, ...,m

(iii) X� 0

C,X,A are hermitesch matrices. Ai are the rows of A. <,> is the inner product.

The minimum eigenvalue E0 of the discretized electron structure can equivalently

computed by the SDP-problem.

min (i) < H,Γfull >Sn

Γfull ∈ Sn
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subject to (ii) < Γfull, I >Sn= 1

(iii) Γfull � 0

where Γfull=full density matrix

Sn=space of all n×n real symmetric matrices

I=identity matrix

(iii) A�B means that A-B has to be a positive semidefinite symmetric matrix.

We know that a density matrix has to be positiv-semidefinit and hermitesch.

Therefore Γfull � 0 must held.

(ii)The inner product in the space Sn is defined as: < A,B >Sn= tr(ATB) =∑
i,j=1

AijBij. This implies that (ii) is equivalent to tr(Γfull) = 1

(i) Expected value of an observable A is: < Â >= tr(Âρ)
trρ

The expectation value

for the Hamiltonian is therefore

< H >= tr(HΓfull)
tr(Γfull)

= tr(HTΓfull) =< HΓfull >.

15.2.1 The full density matrix

The full density matrix has the following form Γfull = Γfull(i1, ....iN ; i′1, ..., i
′
N).

As we see we have two pairs of indices. The indices i1, .., iN take different values

from 1 to r, where r is the basis size.Like the wavefunction Γfull is antisymmetric

under the interchange of any set of indices:

Γfull(i1, ..., ia, ..., ib, ...., iN ; i′1, ..., i
′
N) = −Γfull(i1, ..., ib, ...., ia, ..., iN ; i′1, ..., i

′
N)

The antisymmetrized Γfull is a r!
N !(r−N)!

× r!
N !(r−N)!

matrix, where we have taken the

factor r!
N !(r−N)!

is from before and gives the size of the discretized antisymmetric

wavefunction. We see that the size of the full density matrix is exponentially

large in r and N. This is not suitable as a component for an effective computation

method. To get to an efficient computation we will consider now reduced density

matrices.

15.3 Electronic structure problem as SDP prob-

lem with reduced density matrices

15.3.1 p-body reduced density matrix

First we define the p-body reduced density matrix (RDM) Γp. For the definition

we have to remind to the partial trace ρA = trBρAB. ρA is the partial trace of ρ
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matrices

with respect to the system B. The p-body reduced density matrix is defined as

follow:

Γp(i1, ..., ip; i
′
1, ..., i

′
p) =

N !
(N−p)!

r∑
ip+1,...,iN=1

Γfull(i1, ..., ip, ip+1, ..., in; i′1, ..., i
′
p, ip+1, ..., iN)

The factor N !
(N−p)! is a normalization factor. The p-body reduced density matrix

has as the full density matrix the following properties:

(i) real symmetric

(ii) positive semidefinite

(iii) antisymmetric under interchange of any set of indices

It is easy to see that tr(Γp) =< Γp, I >= N !
N−p)! .

15.3.2 SDP-problem with reduced density matrices

Now we assume that the Hamiltonian has only one-body and two-body interaction

terms. The Hamiltonian looks therefore as following:

H =
N∑
i=1

H(i)+
∑
i<j

H(ij) where H(i) indicates the one-body interaction and H(ij)

indicates the two-body interaction. Therefore the energy of a many-electron

symstem depends only on the one-body and two-body reduced density matrix.

The normalization leads to < Γ1, I >Sn= N < Γ2, I >Sn= N(N−1) and therefore

we can write:

< H,Γfull >=< H1,Γ1 > + < H2,Γ2 > where H1 = H(i) is the one-body

Hamiltonian, H2 = H(ij) is the two-body Hamiltonian, Γ1 the one-body reduced

density matri, Γ2 the two-body reduced density matrix. Now we can formulate the

electronic structure problem as an SDP-problem with reduced density matrices.

min < H,Γ1 >Sn + < H,Γ2 >Sn

subject to < Γ1, I >Sn= N < Γ2, I >Sn= N(N − 1)

and the N-representability: There is a positive semidefi-

nite full density matrix such thatΓ1 is a one-body RDM

and Γ2 is a 2-body RDM.

This N-representability condition requires the reconstruction of the large full

density matrix. But we want to have necessary and sufficient conditions for the

N-representability that don’t require the reconstruction of the large matrix Γfull.
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15.4 Specific N-representability conditions

Remind: Sn is the space of all real symmetric n×n matrices. Because Γ1 has the

form Γ1(i1; i′1) andi1, i
′
1 take different values from 1 to r, we get Γ1 ∈ Sr.

Γ2 has the form Γ2(i, j; i′, j′). Therefore it depends on two sets of indices. Γ2 is

a r!
2!(r−2)!

∗ r!
2!(r−2)!

matrix and therefore Γ2 ∈ Sr(r−1)/2

Because Γ1 ∈ Sr and Γ2 ∈ Sr(r−1)/2 the sizes of the variables in the SDP-problem

with reduced density matrices depend only on r and not any more on N a the

origin SDP-problem.

For the one-body reduced density matrix the remaining necessary and sufficient

N-representability conditions are:

I � Γ1 � 0

This means that Γ1 should be a positive semidefinite matrix and that the largest

eigenvalue of Γ1 is 1. This comes from a corollary.

For the two-body reduced density matrix a complete family of necessary and suf-

ficient conditions is not known yet. For diagonal two-body reduced density ma-

trices the N-representability problem is well understood. This N-representability

problem is equivalent to the characterization of the correlation polytope (Boolean

Quadric Polytope). The optimization over the Boolean Quadric Polytope is NP-

hard.

15.4.1 SDP-relaxation

Because we have only necessary, but not sufficient conditions for the

N-representability of two-body reduced density matrices we look for a SDP-

relaxation. This means that only a reduced number of conditions for the N-

representability of two-body reduced density matrices is checked such that an

effective computation is possible. There has been found( here without deriva-

tion) following conditions:

P � 0, Q � 0, G � 0, T1 � 0, T2 � 0 where all these matrices are linear combina-

tions of the entries of Γ1 and Γ2:

P ≡ Γ2

Q(i, j; i′, j′) ≡ Γ2(i, j; i′, j′) − δ(i, i′)Γ1(j, j′) − δ(j, j′)Γ1(i, i′) + δ(i, j′)Γ1(j, i′) +

δ(j, i′)Γ1(i, j′) + δ(i, i′)δ(j, j′)− δ(i, j′)δ(j, i′)

The matrices P and Q have the same size as Γ2 and have the same antisymmetry

property. Therefore they belong to Sr(r−1)/2.
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Figure 15.1: ground state energies

Figure 15.2: time and memory for SDP

G(i, j : i′, j′) = Γ2(i, j′; j, i′) + δ(i, i′)Γ1(j′, j)

In the matrix G there is no antisymmetry, therefore G belongs to Sr
2
.

T1(i, j, k; i′, j′, k′) = A[i, j, k]A[i′, j′, k′](1
6
δ(i, i′)δ(j, j′)δ(k, k′)−

1
2
δ(i, i′)δ(j, j′)Γ1(k, k′) + 1

4
δ(i, i′)Γ2(j, k; j′, k′))

T1 is fully antisymmetric in both its index triples. Therefore it belongs to

Sr(r−1)(r−2)/6

T2(i, j, k; i′, j′, k′) = A[j, k]A[j′, k′](1
2
δ(j, j′)δ(k, k′)Γ1(i, i′)+1

4
δ(i, i′)Γ2(j′, k′; j, k)−

δ(j, j′)Γ2(i, k′; i′, k))

T2(i, j, k; i′, j′, k′) is antisymmetric in (j,k) and in (j’,k’). Therefore it belongs to

Sr
2(r−1)/2

15.5 Numerical results for the RDM method

We compare now in the figure 1 the SDP-method with Hartree-Fock (HF) and

the mainstream electronic structure methods CCSD and SDCI. CCSD and SDCI

are approximations of FCI.

As a reference we take the Full Configuration Interaction method (FCI).

All energies are given as a difference to the FCI-values.

Since the RDM-method is an SDP-relaxation of the FCI, it always gives a lower

bound for the energy. The origin for this is that the reduced conditions for the

SDP-method yield a bigger space than the space for the full conditions.

On the other hand SDCI and HF give upper bounds.

The entry ”F/C” means: Fail to converge.

We see that the RDM-method with P,Q, T1, T2 we have better results than the

best traditional electronic structure method CCSD. We see that CCSD sometimes

doesn’t converge. The RDM-method converges always for the chosen chemical

elements.

We see in the figure 2 that the RDM-method is not competitive in time because

CCSD provide results in a few seconds.

With the RDM-method it is also possible to calculate the dipole moments. With
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P,Q,G the RDM-method is better than HF and with P,Q, T1, T2, G we have

almost results of FCI.

15.6 Conclusion

With the RDM method with all conditions we get better ground state ener-

gies than current electronic structure methods. In the examples RDM-method

always converge which is not the case for the traditional electronic structure

methods. RDM-method can’t compete in time compared to other methods.For

example with basis size r=18 and all conditions the RDM-method needs 12 hours.

The traditional electronic method needs only few seconds. There are open ques-

tions:search new N-representability conditions such that we have a faster algo-

rithm and to solve very large systems with r > 26.

225



15.6 Conclusion

226



Bibliography

[1] A. J. Coleman and V. I. Yukalov, Reduced Density Matrices: Coulson’s Chal-

lenge, Lecture Notes in Chemistry (Springer, 2000).

[2] M. Fukuda, B. J. Braams, M. Nakata, M. L. Overton, J. K. Percus, M. Ya-

mashita, and Z. Zhao, Large-scale semidefinite programs in electronic struc-

ture calculation, Math. Program. 109, 553 (2007).

227



BIBLIOGRAPHY

228



Chapter 16

Fermionic Density Functional

Theory

Fabio D’Ambrosio
supervisor: Lei Wang

This chapter is dedicated to the theoretical foundations of Den-

sity Functional Theory. A theory, which was tailored to solve

the electronic problem efficiently and which allows to determine

the properties of a N-electron system using solely the electronic

density.

16.1 Introduction

Note added: This talk is based on the following references [1, 2, 3, 4, 5].

The Schrödinger equation is certainly one of the most important equations of

physics and it improved our understanding of matter drastically. But as every

student of physics learns very soon, there are only special cases were an analytic

solution of the Schrödinger equation exists. In most cases we have to use approx-

imation methods such as perturbation theory or variational principles to solve a

concrete problem.

In 1927, one year after the introduction of the Schrödinger equation and its

success in explaining the properties of the hydrogen atom, the Thomas-Fermi

model was proposed. It was a first attempt to understand more complex atoms

than hydrogen and helium and can be understood as an approximate solution of

the quantum N-body problem. However, the Thomas-Fermi model is based on

semi-classical considerations and the central object is the electronic density (an

observable), not the wave function. This is one of the reasons why this method
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is not very accurate and furnishes only the qualitative scaling behavior of the

analyzed system. But the most severe problem in the original Thomas-Fermi

theory is the non-existence of chemical bindings, which arises from ignoring the

Pauli exclusion principle. Different extensions have been proposed to overcome

these difficulties, but the method is still not very accurate.

Better results can be obtained by a method, which is based on the Schrödinger

equation and which incorporates the Pauli exclusion principle. The Hartree-Fock

method with its orbitals and Slater determinants meets these criteria and provides

much better results than Thomas-Fermi theory. Because Hartree-Fock theory re-

spects Pauli’s principle it can describe chemical bindings and thus molecules, but

there are still deviations from experimental data. The deviations arise from the

neglected correlation between the electrons. Nevertheless, Hartree-Fock theory

has many advantages and it’s still used today as starting point for more advanced

methods or for first calculations in hybridized models. However, this chapter is

not about a descendant of Hartree-Fock method but about a theory on its own:

Density Functional Theory (DFT).

P. Hohenberg, W. Kohn and L.J. Sham developed this theory in 1964 / 1965.

They went back to the roots and took the best from Thomas-Fermi and Hartree-

Fock theory to create a new formalism for the quantum N-body problem. In DFT

the electronic density from Thomas-Fermi theory replaces the wave function as

fundamental object and is connected to self-consistent equations and determi-

nantal states known from Hartree-Fock theory.

At fist thought it may look strange to replace the anti-symmetric spin-wave func-

tion of 4N variables, which is believed to contain the most information about the

system by a quantity of only three variables, which basically tells us something

about the distribution of charges. But there are good reasons to look for an

alternative to the wave function. Suppose we want to solve the N-body problem

for oxygen (N=8) by solving the many-particle Schrödinger equation. Then we

would have to deal with 24 coordinates (neglecting the spin). Assuming ten en-

tries per coordinate and one byte per entry we end up with 1024 bytes. A DVD

stores about 1010 bytes and thus we would need 1014 DVD’s to store the infor-

mation contained in the wave function. Clearly, this is not a practicable way to

master the electronic problem. In the following we will develop a new formalism

that allows us to solve our problem more efficiently.

16.1.1 Interlude on functionals

This preparative section is dedicated to the notion of functionals and their deriva-

tives since they play an important role in DFT. Every physicist should be familiar
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with functionals and their derivatives since they already appear in Hamilton’s

principle from classical mechanics. Very often, functionals are regarded as ”func-

tions of functions”. Because this definition is a bit sloppy, we should have a look

at the correct

Definition 16.1. Let V be a K function space with K ∈ {R,C}. Denote by D(F)

⊆ V the definition space of F. Then F: D(F) → E ⊆ K is called a functional.

We will denote functionals as F[f]. Note that it follows directly from the defini-

tion that a functional depends on the whole function f. Expressions like F[f(x)]

do not make sense and have to be avoided since they suggest that the functional

depends on the function value f(x) and not on the whole function f. Functionals

depending on a parameter x will be denoted as F[f](x).

The action S[q] from the already mentioned mechanical principle is a basic exam-

ple of a functional and as every physicist knows, the first variation (first functional

derivative) of S[q] equated to zero leads to the Euler-Lagrange equations. At this

point we should repeat the definition of functional derivative.

Definition 16.2. Let V be a K function space, F a functional, λ ∈ K and f,h ∈
V. Then

δF[f]

δf
:= lim

λ→0

F[f + λh]− F[f]

λ
(16.1)

is called the functional derivative of F[f] (if the right hand side exists ∀h ∈ V).

The idea is the same as for the conventional derivative: Find a linearization in a

given point. For functionals this means find a linearization in a given function.

16.1.2 From density matrices to electronic densities

The next important step towards DFT is to define the electronic density and to

explore its properties. For the following we introduce the variable x := (r, s)

as helpful abbreviation and define the electronic density n over the one-particle

density matrix:

n(r1) :=
∑
s1

ρ1(x1;x1) = N
∑

s1,...,sN

∫
|ψ(x1, . . . , xN)|2d3r2 · · · d3rN (16.2)

Note that the electronic density does not depend on which variable is left out

in the integral and we can drop the index 1 and just write r1 ≡ r, x1 ≡ x and

s1 ≡ s. Moreover, the electronic density n is an observable and has easy to proof

properties like n(r) ≥ 0 ∀r ∈ R3,
∫
n(r)d3r = N and there’s an operator n̂(r)

belonging to the electronic density which has the form n̂(r) =
∑N

i=1 δ(r− ri). An
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other nice property of the electronic density is that it allows us to express the

expectation value of a multiplicative operator of the form Â =
∑N

i=1 â(ri) as

〈ψ| Â |ψ〉 =

∫
a(r)n(r)d3r. (16.3)

This statement is proofed by a straightforward calculation and will be very im-

portant later on.

16.2 Basics of Density Functional Theory

After the two preparing sub-chapters we finally return to our original task: Find

a new formalism for the electronic problem. This problem can be defined as

finding the ground state (GS) energy of N strictly non-relativistic electrons for

arbitrary positions of M nuclei within the Born-Oppenheimer approximation.

Furthermore, we consider only the time-independent, non-degenerate and spin

unpolarized case. To simplify notation, we’ll choose atomic units where me = ~ =

e = 4πε0 = 1. Expressed in these units and in Born-Oppenheimer approximation

the Hamiltonian of our problem reads

Ĥ = −1

2

N∑
i=1

∇2
i︸ ︷︷ ︸

=: T̂

+
1

2

N∑
i 6=j

1

|ri − rj|︸ ︷︷ ︸
=: Û

−
N∑
i=1

M∑
j=1

Zj
ri −Rj︸ ︷︷ ︸

=: V̂

= T̂ + Û + V̂ (16.4)

The variables Zi and Ri denote the nuclear charges and positions, respectively,

and the ri indicate the positions of the electrons. The operators T̂ and Û are

universal (i.e. system independent) operators whereas the operator V̂ is known as

the external potential and carries specific information about the system. Usually,

one would try to solve the many-body SE, derive the wave function as functional

of the external potential and consequently express all observables as expectation

value. However, this is often not a practicable way since the many-body wave

function is not a handy quantity (see introduction) and the SE is very hard to

solve. The following two theorems, the pillars of DFT, open the door to a new

but equivalent formalism.

Theorem (Hohenberg-Kohn I, 1964):

Let Ĥ = T̂ + Û + V̂ be the Hamiltonian of a N -particle system. The operators

T̂ and Û are fixed and c ∈ R is a constant. Then there’s a one-to-one mapping

between (V mod c) and the ground state density n0.
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Proof of HK I. The usual way of solving the electronic problem and deriving the

GS density can be summarized as follows:

V (r)
SE−→
A

ψ[V ](r1, . . . , rN)
(16.2)−→
B

n0(r) (16.5)

The mapping B ◦ A : V (r) −→ n0(r) is invertible if A and B can be inverted.

By considering two different systems, we can easily proof that mapping A is

invertible. For this purpose we show that two different external potentials are

mapped onto two different states. The two systems are described by the Hamil-

tonians Ĥi = T̂ + Û + V̂i and different potentials means (in this context) that

∆V̂ = V̂1 − V̂2 6= const. almost everywhere. We assume by contradiction that

|ψ1〉 = |ψ2〉 =: |ψ〉 6= 0 and have a look at

(Ĥ1 − Ĥ2) |ψ〉 = (E1 − E2) |ψ〉 (16.6)

⇔ ∆V̂ |ψ〉 = (E1 − E2) |ψ〉 .

The right hand side of the last equation is a constant, but ∆V̂ 6= const. by

assumption and |ψ〉 6= 0. Contradiction! We conclude that the two systems

have no common eigenstates and that mapping A can be inverted. The inverse

mapping A−1 can (formally) be found by solving the SE equation for V, i.e.

V =
1

ψ
T̂ψ − U. (16.7)

This follows from the multiplicativity of the potential operators and the fact that

potentials differing by a constant are regarded as equal and thus the constant

energy E can be ignored (gauge freedom).

For the inversion of B we have to proof |ψ1〉 6= |ψ2〉 ⇒ n0,1 6= n0,2 and consider

thus again two different N -particle systems. Assume by contradiction that |ψ1〉 6=
|ψ2〉 produce the same GS density n0. Then calculate the GS energy of system 1.

E1 = 〈ψ1| Ĥ1 |ψ1〉
a)
< 〈ψ2| Ĥ1 |ψ2〉 (16.8)

= 〈ψ2| Ĥ2 + V̂1 − V̂2 |ψ2〉
b)
= E2 +

∫
n0(r)(v1(r)− v2(r))d3r.

The strict inequality a) holds because of the Rayleigh-Ritz principle and the

fact that the Ĥi have no common ground eigenstates. The integral appearing

in b) is the rule given in (16.3). An analogue inequality holds for E2: E2 <

E1 +
∫
n0(r)(v2(r)− v1(r))d3r. By subtracting the two inequalities we obtain

E1 + E2 < E1 + E2 (16.9)

which is clearly a contradiction. We conclude that different ground states produce

different densities and thus B can be inverted. This completes the proof.
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The first Hohenberg-Kohn theorem (HK I) allows us to construct the mapping

n0 −→
(B◦A)−1

V [n0] −→
SE

ψ[n0] (16.10)

and by taking expectation values 〈ψ[n0]| Ô |ψ[n0]〉 = O[n0] we recognize that ev-

ery observable can be expressed as functional of the GS density. This implies that

we can replace the wave function and the GS density becomes the fundamental

quantity of our theory. However, we still need to solve the many-body SE to get

the wave function to calculate the GS density. So, if we really want to get rid of

the wave function, we have to find an alternative to the SE. Such an alternative

will be provided by the following theorem.

Theorem (Hohenberg-Kohn II, 1964):

There exists a functional E[n] with E[n] ≥ E0, where E0 is the exact GS energy.

Equality holds only for n = n0, where n0 is the GS density. Moreover, the

variational equation
δE[n]

δn(r)
= 0

yields the exact GS density n0.

Proof of HK II. The functional E[n] is simply the energy functional defined by

E[n] := 〈ψ[n]| T̂ + Û + V̂ |ψ[n]〉 = T [n] + U [n] + V [n] (16.11)

= FHK [n] +

∫
n(r)v(r)d3r.

The functional FHK [n] is known as Hohenberg-Kohn functional and is a universal

quantity (it’s the expectation value of the two universal operators T̂ and Û). The

theorem follows by applying Rayleigh-Ritz’s principle to E[n].

The variational equation of the second Hohenberg-Kohn theorem (HK II) replaces

the many-body SE and in principle we developed a new formalism. According to

HK I, we can calculate all observables from the GS density and this density can

be found using HK II. However, the variational equation is hard to solve and no

analytic expression for FHK [n] is known.

Nevertheless, we can try to understand an easy system. Following the idea of

Kohn and Sham, we consider a virtual system of N non-interacting spin 1/2

electrons which move in some unknown potential Vs(r). To have a link to our
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physical system, we require that both, virtual and real system have the same GS

density n0. The equation to solve and the side condition then read

δE[n]

δn(r)
=
δTs[n]

δn(r)
+
δVs[n]

δn(r)
=:

δTs[n]

δn(r)
+ vs(r) = 0 (16.12)

N =

∫
n0(r)d3r.

Since the kinetic energy of non-interacting particles Ts[n] and the potential Vs[n]

are not know, this equation can’t be solved directly. However, we can write down

the wave function of our system as Slater determinant consisting of orbitals φi(r)

and derive

n(r) =
N∑
i=1

|φi(r)|2 (16.13)

as expression for the density. Further, Ts[n] can be calculated as expectation

value of the kinetic energy operator and is given by

Ts[n] = −1

2

N∑
i=1

〈φi| ∇2
i |φi〉 . (16.14)

The minimization can now be performed indirectly, i.e. by taking the variation

with respect to the φ∗i (r). The new equation to solve is

δ

δφ∗i (r)

(
Ts[n] + Vs[n]− εi(〈φi|φj〉 − δij)

)
= 0 (16.15)

where the Lagrange multipliers εi were introduced to take into account the or-

thonormality condition of the orbitals. By performing the variation explicitly, we

are led to the equation (
− 1

2
∇2
i + vs(r)

)
φi(r) = εiφi(r) (16.16)

which is satisfied by each electron of the virtual Kohn-Sham system. This N

single-body SE solve (in principle) the electronic problem for the virtual system.

By solving (16.16) for the φi’s one can calculate the GS density by using (16.13)

and thus find all observables. In particular, the GS energy is simply given by

the sum over the εi. But where is the link to a real system? Remember that we

required from our virtual system, that it produces the same GS density like our

physical system. This means that by solving (16.16) in connection with (16.13)

one finds the GS density of the physical system and consequently all observables.

Further, the following one-to-one mapping relation holds due to HK I:

vs ←→ n0 ←→ veff (16.17)
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where veff denotes the effective potential of the physical system (we will define it

below). To find the one-to-one mapping between the two potentials, we rewrite

the kinetic energy of the real system as T [n] = Ts[n]+Tc[n] where Ts[n] represents

the energy contribution of non-interacting particles of density n and Tc[n] is

the remainder coming from the interacting particles. The energy E[n] is then

typically rewritten as

E[n] = Ts[n] + V [n] + UH [n] + EXC [n] (16.18)

where the expectation value of Û is approximated by the Hartree potential UH [n]

U [n] ≈ UH [n] =
1

2

∫
n(r)n(r′)

|r− r′|
d3rd3r′ (16.19)

which can be understood as a classical mean value. The exchange-correlation

(XC) energy EXC is introduced to fix the approximation, absorb Tc[n] and make

equation (16.18) exact again. The variational equation now reads

δE[n]

δn(r)
=
δTs[n]

δn(r)
+
δV [n]

δn(r)
+
δUH [n]

δn(r)
+
δEXC [n]

δn(r)
(16.20)

=
δTs[n]

δn(r)
+ v(r) +

∫
n(r′)

|r− r′|
d3r′ + vxc[n](r)︸ ︷︷ ︸

=:veff

= 0.

The last line is obtained by defining δn(r)EXC [n] =: vXC [n](r) and performing

the variation of the other terms concretely. By comparing (16.20) with (16.12)

we immediately recognize that they have the same form and we have to define

vs := veff . So we found our one-to-one mapping and to study a physical system

we have to solve the so-called Kohn-Sham (KS) equations:(
− 1

2
∇2
i + v(r) +

∫
n(r′)

|r− r′|
d3r′ + vxc[n](r)

)
φi(r) = εiφi(r). (16.21)

These equations are completely equivalent to the many-body SE of the electronic

problem and imply that DFT is (so far) an exact theory and can be regarded as

alternative formalism. Moreover, it turns out that it’s easier to solve the N KS

equations several times than solve the many-body SE once and there’s no storing

problem when using the KS equations. That’s because by discretizing real space

into M points, the needed storage grows as MN (N = number of electrons) for

the SE, but only as MN for the KS equations.

However, since the XC energy functional is not known, one has to find approx-

imations for this term. The simplest ansatz for EXC [n] is called local density
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approximation (LDA) and the idea is once again to study a simpler system and

to apply it to a real physical system. The toy system in LDA is the well-known

homogeneous electron gas (HEG). Even though there is no analytic expression

for the XC energy εHEGXC (n) of the HEG, it can be calculated numerically using

Monte Carlo calculations and there are numerical parameterizations of εHEGXC (n).

The idea is now to approximate the XC energy of the physical system locally

(i.e. around a point r) by εHEGXC (nHEG)|nHEG=n(r). Note that nHEG is a constant

and we choose this constant to be equal to the density of the real system at the

(fix) point r. By summing up all contributions over all space, we’re led to the

expression

ELDA
XC [n] =

∫
εHEGXC (n(r))n(r)d3r . (16.22)

The LDA was originally invented for slow varying densities, however, it turned

out that it works also very good for other densities. Of course LDA is a rather

rough approximation and there are more sophisticated ones, but nevertheless,

now we have everything we need to make DFT work in practice: To solve a

real problem, we first have to choose an approximation for EXC [n] and make an

initial guess for n(r) (for example by using a fast but less accurate approximation

method). Then veff (r) is calculated and inserted into the KS equation. By

solving the N KS equations for the orbitals, we can calculate a new GS density

by using (16.13). The new density is then compared to the initial guess. If the

two densities are not equal, the new one is taken as new initial guess and the

whole cycle is repeated until it converges. This self-consistent cycle is called the

Kohn-Sham scheme. Usually, the KS scheme converges very quickly and provides

very good results, but there’s no criterion if the found GS density is the correct

one and everything depends on the chosen approximation for the XC energy.

Moreover, the formalism developed so far has strong limitations (treats only GS,

time-independent systems, not degenerate GS,...). In the following, we will have

a look at extensions of DFT.

16.3 Time-dependent DFT

Density functional theory has many applications in solid-state physics, chemistry,

biology and mineralogy. But as already mentioned, the basic theory of Hohen-

berg and Kohn is limited and there are different generalizations, which are used

in the different fields. Important extensions are for instance degenerate ground

state DFT, spin / magnetic orbitals DFT to describe paramagnetism / diamag-

netism, relativistic DFT and time-dependent DFT (TDDFT). The last one can

comparatively easy be developed from the basic theory and will be discussed in
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this chapter.

Again, we restrict our discussion to non-relativistic and non-degenerate systems.

But this time we’re not bound to the GS and we require our systems to satisfy

the time-dependent SE. Then the first thing to do is of course to redefine the

electronic density n(r) to n(r, t), where the time-dependency comes from the ex-

plicit time-dependency of the wave function. The next step is to recognize the

differences between a static and a time-dependent quantum mechanical problem.

In the first case the GS of the system can be found by minimization of the total

energy functional E[ψ] = 〈ψ| Ĥ |ψ〉. In time-dependent systems the energy is not

conserved and thus there is no minimization principle. However, a new quantity,

the quantum mechanical action

D[ψ] :=

t1∫
t0

dt 〈ψ(t)| i∂t − Ĥ(t) |ψ(t)〉 (16.23)

can be introduced by analogy. As to expect, the first variation of D[ψ] with

respect to ψ∗ equated to zero yields the tdSE. So the minimization principle gets

substituted by a stationary principle. For stationary points (i.e. for solutions

of the tdSE) the action becomes equal to zero and we can’t assign any physical

meaning to it. This two properties (stationary principle and D = 0 for stationary

points) make the action a less useful quantity than the total energy functional

(minimizing point yield GS and GS energy).

Another important point is that a time-dependent problem in quantum mechanics

is, mathematically, an initial value problem. This means that we have to fix an

initial state and that the density depends on the initial state. Further, we have

to restrict the set of admissible potential to Taylor expandable potentials:

V (r, t) =
∞∑
k=0

1

k!

dk

dtk
V (r, t)

∣∣∣∣
t=t0

(t− t0)k. (16.24)

It is easy to show that two potentials that only differ by a purely time-dependent

constant produce two states, which only differ by a time-dependent phase. Thus

we have to consider potentials that differ by more than a time-dependent constant

and we require

wk :=
∂k

∂tk
[V (r, t)− V ′(r, t)]

∣∣∣∣
t=t0

6= const. (16.25)

for some k > 0. Considering all this differences, we can proof the following two

theorems:
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Theorem (Runge-Gross, 1984):

Let Ĥ(t) = T̂ + Ŵ + V̂ (t) be the Hamiltonian of a N -particle system, V̂ (t)

Taylor-expandable in time. Fix the initial state |ψ(t0)〉. Then there is a one-to-

one mapping between (V (r, t) mod c(t)) and the time-dependent density n.

Proof. We consider two systems (primed and unprimed) and first show that V 6=
V ′ + c(t)⇒ J 6= J′. The current density is simply given by

J(r, t) = 〈ψ(t)| Ĵ(r, t) |ψ(t)〉 (16.26)

where Ĵ(r, t) is the paramagnetic current density operator

Ĵ(r) =
1

2i

N∑
j=1

{
∇rjδ(r− rj) + δ(r− rj)∇rj

}
. (16.27)

Using the quantum mechanical equation of motion for the expectation value of

an operator and the fact that ∂tĴ(r) = 0, we obtain the following equation for

the current density:

∂

∂t
J(r, t) = −i 〈ψ(t)| [Ĵ(r), Ĥ(t)] |ψ(t)〉 . (16.28)

Exactly the same equation holds for J′ with ψ′(t) and Ĥ ′(t). The initial state is

fixed (i.e. ψ(t0) = ψ′(t0) ≡ ψ0 and thus n(r, t0) = n′(r, t0) ≡ n0(r)) and we can

write

∂

∂t
(J(r, t)− J′(r, t))

∣∣
t=t0

= −i 〈ψ0| [Ĵ(r), Ĥ(t0)− Ĥ ′(t0)] |ψ0〉 (16.29)

= −n0(r)∇(V (r, t0)− V ′(r, t0)).

If condition (16.25) is satisfied for some k > 0 and if we apply ∂t k times to

(16.29), we obtain(
∂

∂t

)k+1

(J(r, t)− J′(r, t))

∣∣∣∣
t=t0

= −n0(r)∇wk(r) 6= 0 (16.30)

and we conclude that J(r, t) 6= J′(r, t) for t > t0. The next step is to proof

J(r, t) 6= J′(r, t) ⇒ n(r, t) 6= n′(r, t). For this purpose we write down the conti-

nuity equation

∂

∂t
(n(r, t)− n′(r, t)) = −∇ · (J(r, t)− J′(r, t)) (16.31)

and take the (k + 1)th time derivative of this equation at t = t0:(
∂

∂t

)k+2

(n(r, t)− n′(r, t))
∣∣∣∣
t=t0

= ∇ · (n0(r)∇wk(r)). (16.32)
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Now we have to demonstrate that the right hand side of (16.32) can’t be identical

to zero. We’ll proof it by reductio ad absurdum: Assume

∇ · (n0(r)∇wk(r)) ≡ 0 (16.33)

and apply Green’s theorem to obtain∫
n0(r)

(
∇wk(r)

)2
d3r = +

∮
n0(r)wk(r)∇wk(r) · da (16.34)

−
∫
wk(r)∇ · (n0(r)∇wk(r))︸ ︷︷ ︸

=0 by assumption

.

The surface integral has to vanish as well for potentials arising from normalizable

external charge densities because the quantity wk(r) falls off at least as 1/r. The

integral on the left hand side is obviously non-negative and thus we conclude

n0(r)(∇wk(r))2 ≡ 0 (16.35)

which contradicts wk(r) 6= const. This completes the proof.

The Runge-Gross theorem is obviously related to HK I and by using (16.23) we

could also derive the time-dependent KS equations:

i∂tφi(r, t) =

(
− 1

2
∇2
i + v(r, t) +

∫
n(r′, t)

|r− r′|
d3r′ + vXC [n](r, t)

)
φi(r, t) (16.36)

So TDDFT looks formally like basic DFT, but of course TDDFT is less restricted

and expands the field of applications.

16.4 Summary

Starting from the traditional formulation of the electronic problem, we developed

a new formalism which allows us to solve the problem more efficiently than by

struggling with the SE. We saw that the first Hohenberg-Kohn theorem allows

us to replace the wave function by the GS density and that both are equivalent

to each other. This means that all observables can be derived from the GS

density. By proofing the second Hohenberg-Kohn theorem we replaced the SE

by a variational equation that is independent from wave functions and provides

the exact GS density as solution. Since the variational equation is still not a very

practicable way to solve the electronic problem, we studied a virtual system of

non-interacting spin 1/2 electrons and derived the KS equations. These equations
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are not only satisfied by the virtual system, but also by a real system. The

KS equations, together with an appropriate approximation for the XC energy

functional, are the key to find the GS density of a system and thus to derive

observables. Furthermore, we saw that the formalism of TDDFT looks formally

like basic DFT. Different extensions of the basic theory open the door to a wide

range of applications.
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Chapter 17

Mean Field Theory: Explicit

Derivations

Zievi Ursin Solèr
supervisor: Marcello Porta
(date: 14 May, 9:45)

We want to give an overview about mean-field constructions

in theoretical physics, their applicability and weaknesses. Spe-

cial focus is laid on Ising model as example spin system and

Bose-Einstein condensates by means of Bogoliubov transforma-

tion. Physical arguments why and when mean-field techniques

are applicable for such systems, as well as heuristic arguments

for condensation are gathered but we will also pay attention to

the drawbacks.

17.1 Introduction

In general mean-field techniques and theories (MFT ), also known as self-con-

sistent or molecular-field theories, are methods to analyze physical many body

systems (like those appearing in statistical physics).

A Bose-Einstein condensate (BEC ) is a state of matter of a dilute gas of weakly

interacting Bosons confined in an external potential and cooled to temperatures

close to 0 K. Thus a large fraction of the Bosons occupy the ground state (lowest

accessible quantum state) revealing quantum effects up to macroscopic scales.

According to [1] this state of matter was predicted first by S. N. Bose and A.

Einstein back in 1925. The result of their efforts was the concept of Bose gases

governed by Bose-Einstein statistics, which describes the distribution of identical
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particles with integer spin (allowed to share quantum states). Einstein demon-

strated the effect of cooling bosonic particles below a critical temperature causing

them to fall (or ”condense”) into the ground state, resulting in a new state of

matter. The first experimental realization, namely a gaseous condensate was

produced by E. Cornell and C. Wieman in 1995 at the University of Colorado

for which they received the 2001 Nobel Prize in Physics together with Wolfgang

Ketterle at MIT.

17.2 Mean-field constructions in spin systems

The basic concept of MFT is to replace all interactions in a body with an effective

interaction (e.g. average over it’s neighbors). This reduces a N -body problem

into an effective one-body problem with external field. The study of this effective

problem allows insights into the behavior of the original system, for instance by

exact computation of the partition function and of the Helmholtz free energy.

This leads to a qualitative description of phase transitions (which may or may

not be in agreement with the behavior of the original system) and provides a

simple way to approximately compute the corresponding critical exponents1.

The field theory description allows to expand the Hamiltonian in terms of the

magnitude of fluctuations around the mean of the field. In this context, MFT

can be viewed as the ”zeroth-order” expansion of the Hamiltonian in fluctuations.

Physically, this means an MFT system has no fluctuations, which coincides with

the idea that one is replacing all interactions with one ”mean field”. This provides

a convenient launch-point for studying first or second order fluctuations.

In general, dimensionality plays a strong role in determining whether a mean-field

approach will work for any particular problem.

17.2.1 Ising model

Probably one of the most simple example of a solid state N -body problem one

can think of is the Ising model described by the Hamiltonian

H = −J
∑
<i,j>

sisj −H
∑
i

si with si = ±s = ±1 (17.1)

whose exact analytic solution is known for 1 dimension by Ising itself and for 2 di-

mensions later by Onsager. A straight forward solution for the 1 dimensional case

1The divergence of a few selected physical observables, such as the specific heat CV or the

magnetic susceptibility χ, signals the presence of a phase transitions. These quantities typically

diverge as |T − TC |x, where TC is the critical temperature (critical point) and x the critical

exponent (which takes characteristic values, e.g. CV → x = α, χ→ x = γ, m→ x = β, ...)
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involving linear algebra can be done by the transfer matrix method as described

in [3] sec. 28 and [4] sec. 5-3.

The Ising model is a very good example to demonstrate several mean-field tech-

niques.

The straight way is, according to [2] (sec. 5.2f), to write

si = 〈si〉+ (si − 〈si〉) = m+ (si −m) = m+ δsi (17.2)

and insert this together with the (uniform) mean-field (all spins not just neigh-

bors)

m = 〈si〉 =
1

Z

∑
{si}

sie
−βH =

1

Z

∑
si=±1

sie
−βH, ∀i (17.3)

into the Hamiltonian in order to get the mean-field approximation (it is a long-

range approximation since each spin interacts via the mean-field with all other

spins)

H = −J
∑
<i,j>

(m2 +m(si −m) +m(sj −m) + δsiδsj)−H
∑
i

si (17.4)

= −J
∑
<i,j>

(−m2 +msi +msj + δsiδsj)−H
∑
i

si (17.5)

= −J
N∑
i=1

(2dmsi − dm2)−H
N∑
i=1

si − J
∑
<i,j>

δsiδsj︸ ︷︷ ︸
small b. 〈δsiδsj〉�m2

(17.6)

≈ −
N∑
i=1

(2dJm+H)︸ ︷︷ ︸
=Heff

si +NdJm2 = Hmf (17.7)

with d: dimension of the system considered. Important to notice; this is an

approximation to the exact Ising model and becomes better the higher the dimen-

sion is (more neighbors give smaller fluctuations and a better defined mean field).

This approximation is reasonable for short range potential in infinite dimensions

or very long range potential in finite dimensions (c.f. ”Kac type”potential dis-

cussion in the Curie-Weiss sec. 17.2.2 model later).

Using this new approximated Hamiltonian the (canonical) partition sum becomes
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straight forward to calculate (with β−1 = kBT )

Z(T,m,H) =
∑
{si}

e−βHmf (17.8)

= e−βNJdm
2
∑
{si}

eβ
∑N
i=1 Heffsi (17.9)

= e−βNJdm
2
∑
{si}

N∏
i=1

eβHeffsi (17.10)

= e−βNJdm
2
N∏
i=1

∑
{si}

eβHeffsi (17.11)

= e−βNJdm
2

(2 cosh(βHeff))N (17.12)

and thus the Helmholtz free energy is

F (T,m,H) = −kBT ln(Z) (17.13)

= NJdm2 −NkBT ln(2 cosh(βHeff)) (17.14)

with

m = 0, (H = 0) and F (β) = −N
β

ln 2 (17.15)

a plot is given in fig. 17.1 and in order to find the equilibrium condition we have

0.5 1 1.5 2
T[TC ]

-2.5

-2

-1.5

-1

F(T)/N

Figure 17.1: Free energy for the Ising model as given by eq. 17.14 (with self-

consistence relation 17.17 to get m(T ) needed).

to minimize F with respect to m giving (remember Heff = Heff(m))

0 =
∂F

∂m
= NJ(2d)m−NJ(2d) tanh(βHeff) (17.16)
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which is equivalent to the so-called self-consistence condition

〈si〉 = m = tanh(βHeff) = tanh(2βJmd+ βH) = − 1

N

(
∂F

∂H

)
T,m

. (17.17)

from m (or directly by minimizing) we get the free-energy F and through it all

other thermodynamic properties eventually, including critical temperature TC .

This equation in the regime H = 0 can be solved numerically and resembles the

picture given in fig. 17.2 with the solutions (crossings between tanh and the

linear function) m = 0 and m = ±m0(β). To be able to understand this we have

-2 -1 1 2
m

-1.5

-1

-0.5

0.5

1

1.5

m

Figure 17.2: Visualization of the self-consistence relation 17.17 and its solutions:

red is for T < TC , green at T = TC and black for T > TC (yellow is T � TC).

to look at the susceptibility, which is a good indicator for phase transitions and

it is an observable that can be measured in experiments (in order to check the

theory)

χ(T ) = − d2F

(dH)2

∣∣∣∣
H=0

= − d

dH

(
∂F

∂H
+
∂F

∂m

∂m

∂H

)
H=0

(17.18)

= − d

dH

∂F

∂H

∣∣∣∣
H=0

= N
dm

dH

∣∣∣∣
H=0

≈ N

kBT

(
J(2d)

dm

dH

∣∣∣∣
H=0

+ 1

)
(17.19)

=
J(2d)

kBT
χ(T ) +

N

kBT
=

N

kBT − J(2d)
(17.20)

were we used the approximation2 m(H = 0) = 0 (and thus it is valid for T ≥ TC
as we will see later). χ becomes singular at 1 = βJ(2d) which is called the

critical point or more precisely here the critical temperature TC (through β) and

thus the plot shows a peak as shown in fig. 17.3, this is the phase transition. In

2by using the Taylor’s series for tanh around TC we can also get critical exponents for m

and χ
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0.5 1 1.5 2
T [TC ]

-10

-5

5

10

15

20

χ(T)/N

Figure 17.3: Susceptibility for the Ising model according to 17.20.

order to complete the picture we look at the magnetization curve (solution of self-

consistence relation for several temperatures) fig. 17.4 were the phase transition

0.5 1 1.5 2
T[TC ]

0.2

0.4

0.6

0.8

1

1.2

1.4

m(T)

Figure 17.4: Magnetization for the Ising model according to the self-consistence

relation 17.17 (the critical point/temperature is also called the Curie tempera-

ture).

from ordered phase (below TC or 2βJ > 1) with non-vanishing magnetization

(m = 1 at T = 0) to a disordered phase (above TC or 2βJ < 1) with zero total

magnetization m = 0. Looking at the self-consistence relation; the first solution

m = 0 exist for all temperatures on the other hand the solution with m = m0 6= 0

exists for T < TC only.

The spontaneous magnetization observed is coupled with a spontaneous symmetry

breaking in the free energy (according to the famous Landau theory of a contin-
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uous phase transition). Expanding eq. 17.14 as a Taylor series around m = 0

(small m) we find T ≈ TC

F (T,m,H = 0)

N
≈ − kBT log(2) (17.21)

+

(
Jd− (βHeff|m=H=0)2

2
kBT

)
m2 (17.22)

+
(βHeff|m=H=0)4

12
kBTm

4 +O(m5) (17.23)

a behavior as sketched in fig. 17.5 with 0th, 2nd and 4th order terms. Because of

-1.5 -1 -0.5 0.5 1 1.5
m

0.5

1

1.5

2

2.5

3

F/N

Figure 17.5: Landau free energy for the Ising model according eq. 17.23 (colors

like in fig. 17.2). It is visible that for the red curve two minima away from zero

exist and the convex envelope has to be taken in order to become a physical valid

result.

their signs the 4th order term is always positive but the 2nd order term changes

sign at TC giving either 1 or 3 extrema (from which 1 or 2 are stable minima,

especially m = 0 is not stable for T < TC) and representing the magnetizations

retrieved by self-consistence relation. In order to understand the fact that one

of the two possible solutions ±m is selected consider the fact that this holds for

the case H > 0 too but then fig. 17.2 is not symmetric anymore and the positive

solution +m0 is favored and the unique solution

lim
H→+0

m(H) = +m0 (17.24)

which is after taking the limit the same as before, but clearly preferred3.

3this can be motivated by the fact that there will always be an infinitesimal magnetic field

present - this can be e.g. the intrinsic field of the sample itself caused by thermal fluctuations
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So you should note here that there exist three different regimes; long-range order

below TC , short range order above TC (or even no order at all for T →∞) and a

fractal structure at the critical point TC itself with power law scaling (instead of

exponential), fractal dimension (a real instead of integer value) and self-similar

structure.

A more systematic approach is to use Gaussian transformation (Hubbard-Stra-

tonovich transformation) to retrieve (essentially) the same result and tackle the

discussion of fluctuation in a rigorous way in the context of field theory. Essen-

tially the idea is to switch from a particle theory description into its respective

field theory by linearizing the density operator (matrix) in the many-body in-

teraction term of the Hamiltonian and introducing a scalar auxiliary field, the

mean-field. That way we can retrieve a self-consistent field approximation that

is renormalizable regarding the critical (or Curie) temperature and exponents4.

Following the discussion from [2], sec. 5.2.4f we can introduce a auxiliary field φi
and write

Z =
∑
{si}

e−β
1
2

∑
i,j Jijsisj+β

∑
i siHi (17.25)

= C

∫ ∞
−∞

(∏
i′

dφi′

)
e
β
2

∑
i,j(J

−1)ij(φi−Hi)(φj−Hj)
∑
si=±s

eβ
∑
i siφi

︸ ︷︷ ︸
=e

∑
i ln(2 cosh(βsiφi))

(17.26)

with Jij = −J if 〈i, j〉 are nearest neighbors and 0 otherwise as well as the

constant C = [(2πkBT )N/2
√

detJ ]−1. By using the identity∫ ∞
−∞

dφ e−
φ2

2a
+sφ = e

a
2
s2
∫ ∞
−∞

dφ e−
(φ−sa)2

2a =
√

2πa e
a
2
s2 (17.27)

with any real valued field φ and constant a, thus∫ ∞
−∞

(∏
i′

dφi′

)
e−

1
2

∑
i,j φi(A

−1)ijφj+
∑
i siφi = (2π)N/2

√
detAe

1
2

∑
i,j siAijsj (17.28)

(with matrix Aij) is called Gaussian or Hubbard-Stratonovich transformation and

allows us to write (with constant C)

Z = C

∫ ∞
−∞

(∏
i′

dφi′

)
e−βS(φi,Hi) = e−βF (17.29)

4this means; above the critical dimension the mean field exponents are correct, and the only

effect of fluctuations is to renormalize certain quantities such as the critical temperature
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and this can now be solved by saddle point approximation (sometimes also called

method of steepest descent a variant of Laplace’s method, confer sec. 17.5.1).

The resulting self-consitence relation and thus the thermodynamics retrieved this

way are the same as before. The advantage of this method is that we can calculate

the correlation function

χ = β
∑
i,j

(〈sisj〉 − 〈si〉〈sj〉) =: β
∑
i,j

Γij (17.30)

with Γij the correlation between spins i and j. Variing the distance between

i and j allows us to go beyond mean field level and check the validity of the

approximation. By using Fourier transformation and other calculations we can

then derive an expression showing that at the critical point the correlation length

diverges with a power law and can thus be described by a characteristic critical

exponent. This allows us to get deeper insight into short and long range ordering.

17.2.2 Curie-Weiss model

The classical Curie-Weiss theory of magnetic transitions5 according to [4] sec. 4-5

(and 4-4) considers the Hamiltonian (assuming an interaction potential symmetric

in particle exchange)

H =
∑

1≤i<j≤N

Φ(|~ri − ~rj|)sisj −H
N∑
i=1

si (17.32)

≈ − α
N

∑
1≤i<j≤N

sisj −H
N∑
i=1

si (17.33)

= − α

2N

∑
i

∑
j 6=i

sisj −H
N∑
i=1

si (17.34)

= − α

2N

(
N∑
i=1

si

)2

+
α

2
−H

N∑
i=1

si = Hmf (17.35)

5also referred to as the Weiss-Ising model, mentioned by [3] sec. 29

HWI = − JWI

N − 1

∑
i

∑
j 6=i

sisj −H
∑
i

si (17.31)

The crucial fact is that the Weiss-Ising model can be solved exactly, in contrast to Ising model,

for which the mean-field description is an approximation. The free energy of this model is

dimension and lattice structure independent. By using the theory of large deviations and ran-

dom variables we can write the partition sum as an integral, which can be solved by Varadhan’s

lemma, a fancy kind of Laplace’s method (in context of random variables and corresponding

distribution functions) in order to retrieve the self-consistence relation similar to the one before.
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can be approximated as mean-field theory with si = ±1 (s = 1) and when you

compare eq. 17.33 with eq. 17.1 and 17.31 you can see that this approximation

yields the same models as before, since the interaction potential term is replaced

by the approximation

Φ(r) ≈ 1

N

∫
Φ(r)dr =: − α

N
≤ 0 . (17.36)

Thus the symmetrized Hamiltonian eq. 17.35 can then be used to write the

partition function as (with help of identity eq. 17.27 with a = 1)

Z(T,N) =
∑
{si}

e−βHmf (17.37)

= exp

[
−βα

2

]∑
{si}

exp

 βα
2N

(
N∑
i=1

si

)2

− βH
N∑
i=1

si

 (17.38)

= exp

[
−βα

2

]∑
{si}

(2π)−1/2 × (17.39)

×
∫ ∞
−∞

dφ exp

[
−1

2
φ2 +

(
φ

√
βα

N
+ βH

)
N∑
i=1

si

]
(17.40)

= e−
βα
2 2N

(
βαN

2π

)1/2 ∫ ∞
−∞

dx

(
e−

βαm2

2 cosh(βαm+ βH)

)N
(17.41)

≈ e−
βα
2 2N

(
βαN

2π

)1/2

CN exp

[
N max
−∞<m<∞

f(m)

]
(17.42)

which involves a Gaussian transformation that allows to completely decouple all

spins and enables to carry out the sum over configurations and then a change

of variables in order to use Laplace’s method as N → ∞ were (f could be any

function that fulfills the needs to apply Laplace’s method, but here it is the free

energy per particle f = F/N)

f(m) = −βαm
2

2
+ log cosh(βαm+ βH) . (17.43)

Thus we can write the free energy as

F

N
= −kBT lim

N→∞
N−1 logZ(N, T ) = − 1

β
log 2− 1

β
max

−∞<m<∞
f(m) (17.44)

which yields (after some substitutions) the same self-consistence relation and gives

the same thermodynamics with phase transition and critical-point exponents as

the Ising model, sec. 17.2.1 with α = J(2d).
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A lot more interesting here is to consider the original problem eq. 17.32 and try

to handle this. In fact, after doing the mean-field approximation, the interaction

strength α/N depends on the system size, which is unphysical and is infinite

range. A way to rigorously reproduce some of the predictions of the mean field

approximation is by re-scaling the original interaction potential v as follows (”Kac

type” potential)

Φ(r) = γdv(γr) (17.45)

(with γ > 0 is a constant and v is the original interaction potential). This means

in the case of a ”Kac type” (Kac et al. back in 1963 with v(x) = exp(−|x|) look

at them first) interaction Φ(r) the mean field theory and its solution becomes

exact, since

α

N
= −

∫
Φ(r)dr = −γd

∫ ∞
0

rd−1dr v(γr)

∫
dσd︸ ︷︷ ︸

=Cd

= −Cd
∫ ∞

0

xd−1v(x)dx

(17.46)

(with Cd the d-dim. solid angle) is independent of γ (γ−1 correspond to the range

of the potential, while γ measures its strength), as well as Lebowitz and Penrose

were able to obtain upper (convex envelope, minimal convex function not less

than the given) and lower bonds for Z(V,N, T ) and hence for the free energy

F (V,N, T )/N by first taking the thermodynamic limit N → ∞ and second the

limit γ → 0 (infinitely weak long-range attraction)

F = CE [FMF] (17.47)

(CE: convex envelope) which is the free energy together with the Maxwell (or

double tangent) construction, see also e.g. fig. 17.6 (b) (a full version of Lebowitz

and Penrose’ proof for 1 dimension can be found in [4] app. C and there are more

recent results on Kac type potentials and interactions described by them)

For e.g. ”Kac type” potentials (eq. 17.45), the zero-field free energy

−F (H = 0)

kBT
=

{
log 2 when T ≥ TC

log 2− βαm2
0

2
+ log cosh(βαm0) when T < TC

(17.48)

is exact.

The example potential given allows e.g. to interpret the sum over the potential

as a Riemann sum and thus as integral. Also eq. 17.45 is much too restrictive

and can be relaxed to potential of type Φ(r) = γα/rd+γ accordingly. Last but

not least [5] was able to extend this result to quantum-mechanical systems.
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17.2.3 Lattice Gas model

The Lattice Gas (or Binary Alloy) model as described e.g. in [3] sec. 30 and [4]

sec. 5-2 consists out of lattice of sites that can be occupied by ti 1 or 0 particles

each - in this sense very much like the Curie-Ising model described before, see

sec. 17.2.1.

The potential is a hard-core interaction (maximal 1 particle per site, with coupling

A)

Φ(ri − rj) =


∞ if i = j and both occupied (thus excluded from sum)

−A if i, j nearest-neighbors and occupied

0 otherwise

(17.49)

which can be described short range interaction (with sum
∑

<i,j>) and is therefore

much Ising like. Now we take the same mean-field approximation (
∑

j 6=i)

HLG =
∑
i

∑
j 6=i

Φ(ri − rj)titj = −A
∑
<i,j>

titj (17.50)

≈ −λ
∑
i

ti

(
1

V − 1

∑
j 6=i

tj

)
(17.51)

= − λ

4(V − 1)

∑
i

∑
j 6=i

sisj −
1

2
(λ+ µ)

∑
i

si −
1

4
(λ+ 2µ)V (17.52)

= HLG
mf (17.53)

(the last term is in F of order log V ≈ logN , compare to eq. 17.7 and 17.14)

with constraint ∑
i

ti = N (17.54)

the number of cells occupied, V the total number of lattice sites and by using

one of the substitutions (+ or −)

±si = 1− 2ti ⇐⇒ ti =
1

2
(1∓ si) si ∈ {−1,+1}, ti ∈ {0, 1} . (17.55)

it becomes visible (may be not obvious thought) that it is the same Hamiltonian

as eq. 17.34 (after some variable substitutions) and thus equivalent to the Ising

model. To account for the restriction given in eq. 17.54 we shall consider the

Grand canonical partition sum (because the number of particles in the system is

allowed change, remember z = eβµ)

ZG(T, V, z) =
∞∑
N=0

zNZ(T,N, V ) =
V∑

N=0

zNZ(T,N, V ) =
∑
{ti}

z
∑
i tie−βH (17.56)

256



Mean Field Theory: Explicit Derivations [Zievi Ursin Solèr]

and can now it can be shown that in fact it is up to substitutions and constants

(that do not change thermodynamics) the same as the Canonical partition sum

for the Ising model eq. 17.12 by writing the free-energy in terms of those from

Ising as

− 1

β
lnZG(T, V, z) =

1

N
F (β, J =

1

4
λ,H =

1

2
(λ+ µ))− 1

4
λ− 1

2
µ (17.57)

Therefore in the same way as for the Ising model there exist analytic solutions as

well as mean-field approximations, everything told for the Ising model does also

apply here. Thus we can retrieve the usual gas observables by

Ω = −pV = − 1

β
lnZG,

N

V
= ρ =

z

V

∂

∂z
lnZG, 1− 2ρ = m =

1

V

∂

∂(βH)
lnZ

(17.58)

with Z = Z(T,N = V ) the canonical partition sum of Ising and Ω the grand

(canonical) potential, all other quantities in a similar fashion.

Also interesting to notice might be the fact that this model is able to describe

binary alloys of two different atoms too, after some further transformations.

Considering mean-field approximations we can use the same as for the Ising model

too (e.g. Weiss-Ising, Curie-Weiss before) or we can follow a new path.

According to [3] the result is very similar to Van-der-Waals’ equation for gases

and reproduces e.g. the ideal gas law. This underlines the fact that Van-der-

Waals theory is also a mean-field theory, thus and because of the relation to Ising

anyway it seems feasible to compare the results and consider again the fig. 17.5,

see fig. 17.6

Please note: there is no simple mapping or relation between lattice gases and

quantum lattice gases mentioned later.

17.2.4 Issues / Problems

Now after we have seen what results can be correctly retrieved within mean field

theory for the Ising model (all other are essentially the same) we have to consider

the issues that arise due to mean field approximation:

• you get a phase transition (existence of critical exponents) which is good

but you will always get one even if no one is there, e.g. Ising model in 1

dimension

• the critical exponents retrieved for the phase transition (at TC) are - in

general - different from those of the original model; since they are still

close, a quantitative analysis of the original model at the critical point can

be done by using the renormalization group
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Figure 17.6: The thermodynamic similarities between Van-der-Waals’ gas and

Ising model by taking (V, P )→ (M,−H) (v = V/N = 1/ρ). (a) Maxwell equal-

area construction (A=B) to avoid meta-stable states (from [4] fig. 4.6). (b)

Double tangent construction or convex envelope (from [4] fig. 4.7) is same as

Legendre transformation. (c) Magnetization with hysteresis (like 90 deg. rotated

(a)). (d) Landau free energy without (needed) convex envelope.

• the dependence of the critical exponents from system (lattice) dimension is

also wrong (they are independent of d)

• the result is not physical in the sense of we have to take the convex envelope

(in some cases) in order to fix that

• (thermal) fluctuations are not taken into account appropriately (this was

the main simplification when switching to the mean field instead of using

single spins)

Essentially all those issues are related to the last one, the (thermal) fluctuations

not taken into account appropriately or assumed to be very small (in order of

〈δsiδsj〉/〈δsi〉〈δsj〉 = 〈δsiδsj〉/m2 � 1) which is not true close to the critical point

(phase transition) or for systems of low dimension and thus origin of the so-called
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critical phenomena. There are results that show for d > 4 the critical exponents at

TC are exact (this must not be true for the thermodynamic properties). Another

weaknesses is the self-consistence relation that has to be solved (transcendental

non-linear equation; has to be solved numerically). As mentioned by [2] sec. 7;

while the mean field approximation describes second-order phase transitions in

a very handy way, we have seen that it treats fluctuations poorly so that the

critical behavior is not adequately reproduced.

Since many interactions are replaced by one, it naturally follows that if the field

or particle exhibits many interactions in the original system, MFT will be more

accurate for such a system. This is true in cases of high dimensionality, or when

the Hamiltonian includes long-range forces. The Ginzburg criterion is the formal

expression of how fluctuations render MFT a poor approximation, depending

upon the number of spatial dimensions in the system of interest.

17.3 Mean-field constructions for Bose-Ein-

stein condensates

In general field theories (which mean-field are a sort of) are retrieved by second

quantization (but we use first too) and dealt with in the framework of QFT.

17.3.1 Bose-Einstein condensation

To briefly introduce or remind what BEC is we will closely follow the path of [6]

sec. 1.1, [2] sec. 3 and 4 as well as [7] sec. 8 and 12 (and [3] sec. 23 should

be mentioned for completeness too). The ideal classical gas of particles consists

of the following ingredients: a collection of N � 1 non-interacting particles

in a large box Λ ⊂ R3 and volume V = L3. Since we are interested in the

thermodynamic limit, we will take the limits

N →∞ and L→∞ such that ρ = N/V = const. (17.59)

in a way that the density ρ stays constant.

Since we have non-interacting particles, the Hamiltonian consists of kinetic energy

only

H =
N∑
i=1

~pi
2

2m
(17.60)

with particle mass m and momentum ~pi. The ground state energy is 0 and the
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thermodynamics are given by the partition function

ZN =
1

h3NN !

∫
ΛN

N∏
i=1

d~xi︸ ︷︷ ︸
=V N

∫
R3N

N∏
i=1

d~pi e
−βH

︸ ︷︷ ︸
=(

∫
R3 d~p e−βH)

N

=
1

h3NN !
V N

(
2πm

β

)3N/2

=
1

N !
ZN

1

(17.61)

from this we immediately go on to the next step, calculating all important ther-

modynamic quantities among them the free energy, pressure and internal energy

F = − 1

β
lnZN , p = −∂F

∂V
≈ ρkBT, U = − ∂

∂β
lnZN =

3

2
NkBT (17.62)

by using Stirling’s lnN ! = N lnN−N+O(logN) approximation (logN dropped,

see also eq. 17.52 resp. 17.7 and 17.14).

In quantum mechanics, the Hamiltonian is an operator obtained by first quan-

tization, replacing each ~pj by −i~~∇j, acting on the Hilbert space L2(Λ), with

appropriate boundary conditions. The eigenvalues of ~p2 = −~2∆ (with ∆ =

Laplacian = ~∇2), for a box with periodic boundary conditions, are (2π~)2~n2/L2,

where ~n is a vector with integer components n~p. If the statistics of the particles

is disregarded, the partition function, which in the quantum case is given by

(z = eβµ)

ZG = tr e−β(H−µN) =
∑
N≥0

zNZN (17.63)

the last expression is the same as for the classical (non QM) case thus we write

the most general expression (taking the statistics into account again)

g{n~p} =

 1 indistinguishable particles (Fermions and Bosons)∏
~p

1
n~p!

classical particles (Boltzmann) (17.64)

and

E =
∑
~p

ε~pn~p, N =
∑
~p

n~p (17.65)
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thus eq. 17.63 yields finally

ZG =
∑
{n~p}

g{n~p}z
{n~p}Z{n~p} =

∑
{n~p}

g{n~p}e
−β(E−µN){n~p} (17.66)

=
∑

n~p1 ,n~p2 ,...

[(
gn~p1ze

−βε~p1
)n~p1 (

gn~p2ze
−βε~p2

)n~p2 · · · ] (17.67)

=



∞∑
N=0

zN 1
N !

(∑
~p

e−βε~p

)N

=
∞∑
N=0

zNZclass
N classical∏

~p

∑
n~p=0,1

(
ze−βε~p

)n~p =
∏
~p

(
1 + ze−βε~p

)
Fermions∏

~p

∑
n~p=0,1,2,...

(
ze−βε~p

)n~p =
∏
~p

1

1−ze−βε~p
Bosons

(17.68)

since we are looking at BEC we are interested in the bosonic case only. Thus we

have further (similar to eq. 17.58)

Ω = −pV = − 1

β
lnZG, N = z

∂

∂z
lnZG =

∑
~p

1

eβε~pz−1 − 1
(17.69)

and thus retrieved the familiar Bose-Einstein statistics as needed. Now by taking

the thermodynamic limit N → ∞ we replace the sums over ~p by an integral

L−3
∑

~p → h−3
∫
d3p and we get (for s = 0)

p

kBT
= −4π

h3

∞∫
0

dpp2 ln
(
1− ze−βε~p

)
=

1

λ3

∞∑
l=1

zl

l5/2
=

1

λ3
g5/2(z) (17.70)

ρ =
N

V
=

4π

h3

∞∫
0

dpp2 1

eβε~pz−1 − 1
=

1

λ3

∞∑
l=1

zl

l3/2
=

1

λ3
g3/2(z) (17.71)

with6 λ = h/
√

2πmkBT (the thermal de Broglie wavelength) and

gu(1) = ζ(u) =⇒ g5/2(1) = ζ(5/2) ≈ 1.342, g3/2(1) = ζ(3/2) ≈ 2.612

(17.77)

look also at plot fig. 17.7. This is a monotonously increasing function of µ, which

is bounded as the chemical potential µ→ 0 (z → 1) by the critical density

ρC = λ−3g3/2(1) (17.78)

6by using the Taylor series

− log(1− x) =

∞∑
k=1

xk

k
⇒ ∂

∂x
[− log(1− x)] =

1

1− x
=

∞∑
k=0

xk (17.72)
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Figure 17.7: The g-functions g3/2(z) (straight line) and g5/2(z) (please note that

g′3/2(z → 1)→∞).

and thus the density seems to be upper bounded by a (constant!) value (for all

z). Consider that the chemical potential µ is a measure on how much energy it

costs to add or remove a particle to/from the system. This (absurd) phenomenon

- as the density should become free and not fixed in this limit, since there is no

physical reason to expect the density of a Bose gas to be bounded from above -

was discovered by Einstein, and the resolution is that the particles exceeding the

critical number all go into the lowest energy state. In mathematical terms, this

means that we have to let µ→ 0 simultaneously with L→∞ to fix the density at

some number > ρC . In this case, we have to be more careful in replacing the sum

in eq. 17.71 by an integral (coming from eq. 17.68 and 17.69). It turns out to be

you can see that

−
∫ ∞
0

log(1− ze−βε~p)p2dp =

∞∑
k=1

zk

k

∫ ∞
0

e−βε~pkp2dp (17.73)

=

∞∑
k=1

zk

k

(
−2m

k

)
∂

∂β

∫ ∞
0

e−βp
2k/2mdp︸ ︷︷ ︸

=(1/2)
√

2mπ/βk

(17.74)

=
1

4π

(
2πm

β

)3/2

︸ ︷︷ ︸
=(h/λ)3

∞∑
k=1

zk

k5/2
(17.75)

and analogue with the Taylor series of

1

x−1 − 1
=

∞∑
k=1

xk = x
∂

∂x
[− log(1− x)] (17.76)
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sufficient to separate the contribution from the lowest energy level (single particle

ground state ~p = 0), and approximate the contribution from the remaining terms

by an integral. The result is that, for ρ > ρC we replace eq. 17.71 by

ρ =
N

V
= λ−3g3/2(1)︸ ︷︷ ︸

=ρC

+ρ0 (17.79)

notice that the critical temperature TC (for fixed ρ) is defined as

at TC : ρ = ρC ⇒ 1 =
ρ

ρC
=
λ−3g3/2(z)

λ−3
C g3/2(1)

⇒
g3/2(z)

g3/2(1)
=

(
λ

λC

)3

=

(
TC
T

)3/2

(17.80)

(with λC = h/
√

2πmkBTC) which helps us to write for any T

ρ0(β) =
N

V
− ρC =

N

V

(
1− ρC

ρ

)
=
N

V

(
1−

λ−3g3/2(1)

λ−3g3/2(z)

)
=
N

V

(
1−

(
T

TC

)3/2
)

(17.81)

(look at fig. 17.8 also) this is the same as

Figure 17.8: (left) shows the distribution of the momenta over the density (ρ = n,

ρC = nn here). (right) shows the dependence of the p = 0 momentum distribution

n0/n = ρ0/ρ introduced in eq. 17.79 in order to fix the density below the critical

temperature. Both figures from [2] p. 80.

ρ0(β) = lim
L→∞

1

V

1

eβ(ε0−µ) − 1
(17.82)

and ρ0 is the density of the ”condensate” (the dependence of µ on L is determined

by using eq. 17.69 to write N = L3ρ with fixed ρ).

The phenomenon that a single particle level has a macroscopic occupation, i.e., a

non-zero density in the thermodynamic limit, is called Bose-Einstein condensation
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(BEC). Note that in the model considered there is no condensation into the

excited energy levels, and one always has

lim
L→∞

1

V

1

eβ(εi−µ) − 1
= 0 (17.83)

for i ≥ 1, since εi − µ ≥ εi − ε0 = const. × L−2 . Note that in the case of zero

temperature, i.e., the ground state, all the particles are in the condensate, i.e.,

ρ = ρ0. In a sector of fixed particle number, the ground state wave function is

simply a product of single particle wave-functions in the lowest energy state.

17.3.2 Bose-Einstein condensation for interacting sys-

tems

Such systems are described, according to [10] sec. 2 and 3, by a one-particle

density matrix γ ∈ L2(R3) (acting on Fock space). Note that γ is a positive trace

class operator on the one-particle Hilbert space H1, with ϕi a complete basis set,

a†i , ai operator valued distributions (creator/annihilator), we have

tr γ =
∑
i

〈ϕi|γ|ϕi〉 = 〈
∑
i

a†iai〉 = 〈N〉 (17.84)

and γ has the integral kernel7 like (specifically, if ψ0 is the ground state of HN

the N -particle Hamiltonian)

γ(x, y) = N

∫
ψ0(x, x2, . . . , xN)ψ0(y, x2, . . . , xN)dx2 · · · dxN (17.86)

According to a criterion by Penrose and Onsager, BEC is said to occur if γ has

an eigenvalue of the order of 〈N〉. The corresponding eigenfunction is called the

condensate wave function and has to be the constant function L−3/2. Since this

definition involves large particle numbers 〈N〉, it refers, strictly speaking, not to

a single state but rather a sequence of states for larger and larger system size

(and they are not product of single particle states). When one speaks about

the occurrence of BEC one hence always has to specify how various parameters

depend on this size. The system should be translation invariant and strictly

positive which holds for the integral kernel γ(x, y) = γ(x−y) also, thus following

[6] sec. 1.2
1

V

∫
dxdy γ(x, y) = O(N) ∝ cN (17.87)

7with trace

tr γ =

∫
dx γ(x, x) (17.85)
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(with a constant c) has to be true, as stated before. The largest eigenvalue is

always associated to the constant eigenfunction, and BEC can only occur in the

zero momentum mode. BEC is extremely hard to establish rigorously. In fact,

the only known case of an interacting, translation invariant Bose gas where BEC

has been proved in the standard thermodynamic limit is the hard-core lattice gas

according to [6] sec. 1.2 and 11 BEC in the special case at half-filling (i.e., N =

half the number of lattice sites). The proof of this relies crucially on a special

property of the system known as reflection positivity. Dyson, Lieb, Simon (1978)

extend earlier results by [8] on classical spin systems, where this property was

first used to proof the existence of phase transitions. Reflection positivity holds

only in the case of particle-hole symmetry, i.e., µ = 0, and hence the proof is

restricted to this particular case.

Besides the hard-core lattice gas, there is also a model (not in mean-field) describ-

ing Bosons in optical traps which allowed to retrieve one of the most remarkable

recent developments in the study of ultracold Bose gases. BEC has been estab-

lished in the limit in which the scattering length a is replaced by a/N (N =

number of bosons) and N → ∞, confer [10] sec. 4 this is a Quantum Phase

Transition in an Optical Lattice Model ([6] sec. 1.2 and 11) in dependence of the

periodic trap potential strength λ. This is a reversible transition from a Bose-

Einstein condensate to a state composed of localized atoms as the strength of a

periodic, optical trapping potential is varied. Lieb et al. rigorously analyzed a

model of this phenomenon. The gas is a hard core lattice gas. For small λ and

temperature BEC is proved to occur, while at large λ BEC disappears, even in

the ground state, which is a Mott insulator state with a characteristic gap. The

inter-particle interaction is essential for this effect.

Furthermore [6] shows in app. D, that under quite general assumptions, BEC goes

hand in hand with spontaneous gauge symmetry breaking. Breaking of a contin-

uous symmetry is notoriously difficult to prove, and in one and two dimensions it

is excluded, at least at positive temperature, by the Hohenberg-Mermin-Wagner

Theorem. This partly explains why a rigorous proof of BEC for inter-acting sys-

tems is still lacking in general. Gauge symmetry breaking corresponds for the

magnet to spontaneous magnetization.

This concept of BEC as a large eigenvalue of the one-particle reduced density ma-

trix immediately generalizes to thermal states, both in the canonical and grand-

canonical ensembles (or, more generally, to states defined by arbitrary density

matrices).

265



17.3 Mean-field constructions for Bose-Einstein condensates

17.3.3 Bogoliubov approximation

To threat at BEC in the framework of mean-field theory in quantum mechan-

ics we have in general to use the well developed language of QFT. However the

Bogoliubov transformation represents a somehow (simpler) straight forward ap-

proach not needing the (whole) QFT machinery (with exception of some details

needed in order to e.g. compare to experiments) and still yielding the same re-

sults for the Dilute Bose Gas in 3D. Bogoliubov is non a non perturbative (in

coupling constants) approach for a hard interacting Bose systems8.

Consider a dilute Bose gas in 3 dimensions (continuous space in a box L3), ac-

cording to [9] sec. 18, 35, [10] sec. 3, [6] sec. 2 and others we first write the

non-interacting ground state of N bosons as

|φ0(N)〉 = |N, 0, 0, . . .〉 (17.88)

and notice that none of the two ladder or creation/annihilation operators anni-

hilates the ground state (zero momentum)

a0|φ0(N)〉 = N1/2|φ0(N − 1)〉, a†0|φ0(N)〉 = (N + 1)1/2|φ0(N + 1)〉 (17.89)

and the usual separation into creation and annihilation operators fails completely.

Thus, considering the special role of the zero-momentum state and note, when

we re-scale them by V −1/2 as

ξ0 = V −1/2a0, ξ†0 = V −1/2a†0 ⇒ [ξ0, ξ
†
0] = V −1, 〈ψ0|ξ†0ξ0|ψ0〉 =

N0

V
= ρ0

(17.90)

with interacting ground-state ψ0 wave function and

ξ0|φ0(N)〉 =

(
N

V

)1/2

|φ0(N − 1)〉, ξ†0|φ0(N)〉 =

(
N + 1

V

)1/2

|φ0(N + 1)〉

(17.91)

in the thermodynamic limit according to eq. 17.59 the commutator vanishes and

thus it seems to be natural to replace the operators a0 and a†0 by complex numbers

(this is also related to coherent states, as mentioned by [10] sec. 4.5)

a0, a
†
0 → N

1/2
0 ∈ C (17.92)

8this can be very handy in cases as mentioned at the beginning of [9] sec. 6 in a discussion

why perturbing Bose Einstein condensate is hard to describe, e.g. it may not even be possible

to do an expansion, since the ground state does not have a perturbative expansion
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The model Hamiltonian we want to consider is a dilute Bose gas with simple

multi-particle interaction like9

Ĥ =
∑
~k

~k2 a†~ka~k +
1

2V

∑
~k,~k3,~k4

F [v](~k) a†~k4+~k
a†~k3−~k

a~k3
a~k4

(17.94)

=
∑
~k

~ω~k a
†
~k
a~k +

g

2V

∑
~k1,~k2,~k3,~k4

a†~k1
a†~k2
a~k3
a~k4

δ~k1+~k2,~k3+~k4︸ ︷︷ ︸
=Ĥint

(17.95)

with pseudo-potential g replacing Fourier transform of the actual one F [v](~k).

Only keeping terms of order N0 and N2
0 (because 1st order are of N

1/2
0 and 3rd

order are neglected) and then using eq. 17.92 we get

Ĥint ≈ a†0a
†
0a0a0 + (17.96)

+
∑
~k 6=0

[
2(a†~ka~ka

†
0a0 + a†

−~k
a−~ka

†
0a0) + a†~ka

†
−~k
a0a0 + a†0a

†
0a~ka−~k

]
(17.97)

= N2
0 + 2N0

∑
~k 6=0

(a†~ka~k + a†
−~k
a−~k) +N0

∑
~k 6=0

(a†~ka
†
−~k

+ a~ka−~k) (17.98)

now all interactions of particles outside the condensate ~k 6= 0 are neglected, which

is valid as long as N −N0 � N . The neglected terms do contributed in 3rd order

perturbation theory only since at least 3 collisions (Feynman diagram vertices) are

needed to excite a particle from condensate above it have a collision/interaction

there and go back to condensate. The number operator becomes

N̂ = N0 +
1

2

∑
~k 6=0

(a†~ka~k + a†
−~k
a−~k), N = 〈N̂ 〉 (17.99)

and using it the Hamiltonian reads

Ĥ =
1

2
V gρ2 +

1

2

∑
~k 6=0

[(
ε0k + ρg

) (
a†~ka~k + a†

−~k
a−~k

)
+ ρg

(
a†~ka

†
−~k

+ a~ka−~k

)]
(17.100)

with n = N/V the particle density.

9the choice of this Hamiltonian might be better motivated when considering the equivalent

but written in first quantization as

Ĥ =̂

N∑
i=1

∆i +
∑

1≤i<j≤N

v(|xi − xj |) (17.93)
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The diagonalization of Ĥ is simplest to be carried out by defining a new set of

creation and destruction operators αk and α†k according

a~k = ukα~k − vkα
†
−~k
, a†~k = ukα

†
~k
− vkα−~k (17.101)

[α~k, α
†
~k′

] = δ~k~k′ , [α~k, α~k′ ] = [α†~k, α
†
~k′

] = 0 (17.102)

called the Bogoliubov transformation (also used by Holstein and Primakoff). The

commutation relations impose the restriction

u2
~k
− v2

~k
= 1, ∀~k =⇒ u~k = coshϕk, v~k = sinhϕk (17.103)

from which we then may find

Ĥ =
1

2
V gρ2 +

1

2

∑
~k 6=0

[(
ε0k + ρg

)
v2
~k
− ρgu~kv~k

]
+ (17.104)

+
1

2

∑
~k 6=0

[(
ε0k + ρg

) (
u2
~k

+ v2
~k

)
− 2ρgu~kv~k

] (
a†~ka~k + a†

−~k
a−~k

)
(17.105)

+
1

2

∑
~k 6=0

[
ρg
(
u2
~k

+ v2
~k

)
− 2

(
ε0k + ρg

)
u~kv~k

] (
a†~ka

†
−~k

+ a~ka−~k

)
(17.106)

since the parameters uk, vk are not fixed yet we chose to eliminate the last line eq.

17.106 of the Hamiltonian which becomes explicitly diagonal in the quasi-particle

number operators α†~kα~k then. That allows us to determine all of its eigenvectors

and -values (diagonalize) and the transformation parameters become

ρg
(
u2
~k

+ v2
~k

)
= 2

(
ε0k + ρg

)
u~kv~k =⇒ tanh 2ϕk =

ρg

ε0k + ρg
(17.107)

The ground state energy is then given by α~k|ψ0〉 = 0 ∀~k 6= 0

Ek =
(
(ε0k + ρg)2 − (ρg)2

)1/2
, E = 〈ψ0|Ĥ|ψ0〉 =

1

2
V ρ2g +

1

2

∑
~k 6=0

(
Ek − ε0k − ρg

)
(17.108)

note that |ψ0〉 is a complicated combination of unperturbed eigenstates since

neither ak nor a†k annihilates it. Since all excited states correspond to various

numbers of non-interacting Bosons each with an excitation energy Ek the spec-

trum has the form (same as for a dilute hard-core Bose gas)

Ek ≈


(
ρg
m

)1/2 ~k =

(
4πaρ~2

m2

)1/2

︸ ︷︷ ︸
=c

~k k → 0

ε0k + 4πaρ~2

m
k →∞

(17.109)
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at long wavelengths, the interacting spectrum is characteristic of a sound wave

with velocity given by c for repulsive interaction (g > 0, a > 0). Furthermore we

even get

E

N
=

2πa~2ρ

m
[1︸ ︷︷ ︸

1. term

+
128

15

(
ρa3

π

)1/2

+ 8

(
4π

3
−
√

3

)
(ρa3) log(ρa3) +O(ρa3)

]
(17.110)

in a non-perturbative way fully agreeing with [9] sec. 35 and [6] sec. 2 in the first

term. Notice that it matches the naive guess of (# of pairs)× (energy per pair)

of two-body scattering. This result can also be achieved by other means too, e.g.

QFT [9] sec. 22 and is thus first term (order) is well confirmed (also with models

that do not have to assume condensation). The reason for avoiding QFT is not

having to find alternatives to Wicks theorem which need annihilation operators to

kill the ground-state which is not the case for bosonic system like here. Recently

(1998) Lieb and Yngvason were able (according to [10] sec. 2) to derive an lower

bound (for the 1st order, no full solution) which is in agreement with eq. 17.110.

Using a variational approach Dyson proved the upper bound already (1957) but

his the lower bound was 14 times to small. The upper bound can be retrieved by

Ritz method (it is a question of good set of functions and a lengthy calculation),

whereas the lower bound is a hard problem. The typical wave functions of a

particle is necessarily spread out over a region much bigger than the mean particle

distance. The particles hence completely lose their individuality, and behave very

quantum (i.e., non-classical) in this sense and contrast to e.g. Fermions. There

are rigorous results for Two-Dimensional Bose Gas and Bose Gas at Positive

Temperatures.

A rigorous derivation of the lowest order contribution to the ground state energy

for dilute bosonic gas in 3d (which hints the presence of condensation) can be

found in [6] sec. 2 and app. D. This theorem (due to Dyson-Lieb-Yngvason-

Seiringer) establishes on a mathematical basis the prediction of the Bogoliubov

theory (which is mean-field theory for interacting bosons) in the lowest order.

The ground state distribution function is given by

nk = 〈ψ0|α†~kα~k|ψ0〉 = v2
~k
〈ψ0|α~kα

†
~k
|ψ0〉 = v2

~k
≈
{
k−1 k → 0

k−4 k →∞ (17.111)

At some point during calculation, after clever canceling of all divergences occur-
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ring, we replaced the pseudo-potential g by the scattering length a

g =
4π~2a

m
(17.112)

a =
1

8π
inf
φ


=L (Lagrangian)︷ ︸︸ ︷∫

R3

d3x (2|∇φ(x)|2 + v(|x|)|φ(x)|2)︸ ︷︷ ︸
=L (Lagrange density)

: lim
|x|→∞

φ(x) = 1

(17.113)

(L: Lagrangian) this is convenient according to [9] in first order and needed to

be able to relate the results to experimental data. Consider sec. 17.5.2 for more

info.

Now lets summarize the important assumptions we did here which are in fact at

the same time the biggest drawbacks of Bogoliubov also, thus confer sec. 17.3.4.

Applications include e.g. The Charged Bose Gas - Two-Component Case [6] sec.

10.2, 10.3 may be sec. 5 also.

We have discussed the bosonic mode of Bogoliubov theory, but there is also a de-

scription for fermionic modes with the most prominent application by Bogoliubov

himself for the BCS theory of superconductivity. The fermionic mode includes

the usual trigonometric functions instead of the hyperpolic ones (among other

changes as well, confer e.g. [1])

17.3.4 Issues / Problems

Again after we have shown what results are possible to calculate through the

methods mentioned, we should now consider their drawbacks.

In general:

• Except for lattice gas with half filling and the optical lattice model; BEC

for interacting particles is a problem! (in general interacting bosonic QM

systems are hard to solve)

Regarding Bogoliubov the biggest drawbacks are also the important assumptions

done

• a-priori condensation (BEC) has to be assumed, i.e. almost all particles

are in the same one-particle state (cannot be proven within this theory)

and is related to the next 2 points

• large number N of particles in condensate; N0 large i.e. N0 ≈ NTotal

• a†0, a0 → N
1/2
0 and a†0a0 → N0 (as mentioned)
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• formally Hamiltonian of free theory (2 terms only; e.g. α~kα
†
~k
) and 2 quasi-

particle interaction (4th order terms; like e.g. α~kα
†
~k
α~kα

†
~k
) are neglected

• Bogoliubov transformation or substitution (as mentioned)

17.4 Conclusions

We have given some ideas on how to do mean-field approximations on spin sys-

tems like Ising (and Lattice gas) model, which lead to the same results (in fact

all those systems have the same thermodynamics).

For BEC we have laid out the basic theory and shown one of the well known

mean-field techniques, the Bogoliubov approximation. Treating BEC within this

framework is very complex and only two fully solved models are known (half filled

lattice gas and optical trap potential model).

The applicability for spin systems is strongly related with (the range of) the inter-

action potential and fluctuations regime considered. There exists rigorous results

(e.g. Lebowitz-Penrose theorem, renormalization group) and thus sophisticated

methods to tackle this nowadays. For BEC systems the question on applicability

is somehow out of scope since it is not possible to show condensation yet (for

more than 2 outstanding models). If applied e.g. to dilute gas and assuming

condensation, the result are surprisingly good; according to [6] sec. 2 Lenz found

the first order for the ground state energy of a single particle in the presence of

N − 1 randomly placed particles, given in eq. 17.110. This calculation, would

give the correct energy, provided the fixed particles are uniformly distributed.

Heuristic arguments for condensation include as most prominent example the

spontaneous breaking (of gauge symmetry) which works in all cases. The problem

for spin systems is, we retrieve always a phase transition (even for models like

1D Ising for which it is known to be absent). For BEC of interacting particles

an eigenvalue of the interaction potential kernel (one particle reduced density

matrix) in the order of N has to be present.

I would like to thank my Tutor Marcello Porta and Max Hfliger for their support,

assistance and patience during this pro-seminar.
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17.5 Appendix

17.5 Appendix

17.5.1 Laplace’s method, Steepest descent and Varad-

han’s theorem

Consider a partition sum containing an arbitrarily complex Hamiltonian. One

possible solution to this disaster is to change from summation over discrete vari-

able to the integration over an according continuous set or measure µ

Z(β) =
∑
{si}

e−βH(si) = CN

∫
Λ'Rd

eNf(~x)dµN(~x) (17.114)

with a function f(~x), x ∈ Λ and the constant CN , that may (but does not have

to) depend on N . Considering the 1 dimensional case, the following theorem

called Laplace’s method holds for N →∞ (e.g. in the thermodynamic limit)

N →∞:

∫ b

a

eNf(x)dx ≈

√
2π

N |f ′′(x0)|
eNf(x0) with max

x∈R
f(x) = f(x0)(17.115)

with f(~x) at least 2 times differentiable function with unique global maximum

at x0 and fast decaying away from it (confer [1] also). Doing integral calculus

attempting to solve an integral of this form we write the Taylor’s expansion for

f(x) around its global maximum x0 (f ′(x0) = 0, f ′′(x0) < 0)

f(x) = f(x0 + ∆x) = f(x0) + f ′(x0)∆x+
1

2
f ′′(x0)(∆x)2 + (17.116)

+O
(
(∆x)3

)
(17.117)

≈ f(x0) +
1

2
f ′′(x0)(x− x0)2 (17.118)

= f(x0)− 1

2
|f ′′(x0)|(x− x0)2 (17.119)

thus we may write

lim
N→∞

∫ b

a

eNf(x)dx ≈ lim
N→∞

∫ b

a

eN(f(x0)− 1
2
|f ′′(x0)|(x−x0)2)dx (17.120)

= lim
N→∞

eNf(x0)

∫ b

a

e−N
1
2
|f ′′(x0)|(x−x0)2

dx (17.121)

≈ lim
N→∞

eNf(x0)

∫ ∞
−∞

e−N
1
2
|f ′′(x0)|(x−x0)2

dx (17.122)

= lim
N→∞

eNf(x0)

√
2π

N |f ′′(x0)|
(17.123)

= lim
N→∞

eNf(x0)

√
2π

−Nf ′′(x0)
(17.124)

272



Mean Field Theory: Explicit Derivations [Zievi Ursin Solèr]

the first approximation was to cut the Taylor’s expansion at 2nd order and the

second approximation was to expand the integration interval to whole R since the

f(x) is (very) fast decaying and zero there. The later approximation allows to

translate to x0 = 0 and evaluate the Gaussian integral (this is a relation, to the

Gaussian transformation also). To summarize the idea assume that the function

f(x) has a unique global maximum at x0. If this function gets multiplied by a

large number N , the gap between Nf(x0) and Nf(x) will increase additionally

and then grow exponentially for the function eNf(x). This means all significant

contributions to the integral of this function come from points in a neighborhood

of x0 only, which is what we have estimated. The basic ideas for approximations

are also closely related to the Stationary phase approximation which is for oscil-

latory integrals and integrates the function and the point where the exponential

becomes constant since that gives the biggest contribution.

An extensions of Laplace’s method for complex analysis (in particular together

with Cauchy’s integral formula), is used to find a contour of steepest descent for

an (asymptotically with large N) equivalent integral, expressed as a line integral.

More precises, if no point x0 exists on the real line where the derivative of f

vanishes (maxima), it can become handy to deform the integration contour away

from the real line into the complex plane, where the simpler integral can be

explicitly evaluated.

For a sequence (~x1, ~x2, . . .) of d-dimensional variables ~xi random variables, the

Varadhan’s theorem is a way to estimate the same kind of integrals as before

(explained in full detail in [3] sec. 20).

17.5.2 Scattering length

The scattering length is an experimentally accessible quantity (observable).

According to [1] it holds, that the scattering length describes low-energy scatter-

ing

lim
k→0

σ = 4πa2 (17.125)

where k is the wave number and σ the elastic cross section at low energies. When

a slow particle scatters off a short ranged scatterer (e.g. an impurity in a solid

or a heavy particle) it cannot resolve the structure of the object since its de-

Broglie wavelength is very long. The idea is that then it should not be important

what precise potential V (r) one scatters off, but only how the potential looks

at long length scales. The formal way to solve this problem is to do a par-

tial wave expansion (somewhat analogous to the multipole expansion in classical

electrodynamics), where one expands in the angular momentum components of
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17.5 Appendix

the outgoing wave. At very low energy the incoming particle does not see any

structure, therefore to lowest order one has only a spherical symmetric outgoing

wave, the so called s-wave scattering (angular momentum l = 0) without higher

momentum p and d-wave (l=1,2). The idea of describing low energy properties

in terms of a few parameters and symmetries is very powerful, and is also behind

the concept of renormalization.
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17.6 Table of symbols

R, C real and complex space, accordingly we have integer space N and

whole numbers Z
δij Kronecker delta (Levi-Civita-Symbol)

O Landau symbol

T , β system temperature (and β = (kBT )−1 with kB Boltzmann’s

constant) and e.g. TC the critical temperature

V , N , ρ system volume V = Ld, size and density (in thermodynamic limit

L,N →∞ such that ρ = N/V = const.), N = n e.g. n~p, nk
N̂ Number operator

d system/space dimension (2d number of bonds per lattice site)

i, j, l, . . . index variables ∈ N may be ∈ Z
si spin variable, takes values ±s and has fluctuations δsi around its

mean-field magnetization m

ti site occupation variable, takes values ∈ {0, 1}
m system magnetization (per spin m = M/N , with M total mag-

netization) with physical solution ±m0 or the mass

H external magnetic field and e.g. Heff the effective field

J , Jij coupling constant (related to A and λ also) and as a matrix for

every single interaction

H Hamilton function (Hamiltonian), e.g. Hmf the mean-field one

Ĥ Hamilton operator (may also involve a Laplacian or Laplace op-

erator ∆), e.g. Ĥint the interaction Hamiltonian

Z, ZN canonical partition sum, e.g. ZN the N -particle partition sum

(sometimes can be written as ZN = ZN
1 )

ZG, z grand canonical partition sum and fugacity z = eβµ with chemical

potential µ

F (Helmholtz) free energy (for whole system; per site is f = F/N)

Ω, p grand potential and pressure (or momentum modulus, see below)

S entropy

〈·〉 thermal/weightened average

χ susceptibility (also related to 〈sisj〉 and Γij)

φi, φ scalar real valued field, thus e.g. potential field Φ too

CE[·] convex envelope of any function, e.g. by Legendre transformation

~p, ~k, ~x momentum vector pi or ki and space vector xi (with p = |~p|)
h, ~ Planck constant with ~ = h/2π

E, U energy (e.g. Ek but also ε~p, ε
0
k) and internal energy

λ, ω coupling constant in Lattice gas model (related to A) or (ther-

mal) de Broglie wavelength and eigen frequencies, e.g ω~k
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17.6 Table of symbols

gu, ζ g-functions (to simplify notation of free BEC) and Zeta function

with gu(1) = ζ(u)

ρC , ρ0 BEC critical density and ground state (zero momentum) state

density with λC the according de Broglie wavelength

|φ0(N)〉 bosonic ground state functions (for N bosons), e.g. for BEC

a
(†)
~k

creation a†~k and annihilation a~k (ladder) operators belonging to

momentum state ~k (and basis fucntion |φ~k(N)〉)
ξ

(†)
0 re-scaled ladder operators (for ground state) with commutator

that vanishes in the thermodynamic limit

[·, ·] commutator of 2, e.g. ladder operators

F(·) Fourier transformation (from spatial/real to momentum space)

g, a pseudo potential g (replacing the actual potential in momentum

space - after Fourier transf.) and (s-wave) scattering length a

α
(†)
~k

Bogoliubov ladder operators with the (real valued) transfor-

mation parameters uk, vk
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Chapter 18

Mean Field Theory: General

Results

Max Häfliger
supervisor: Volkher Scholz

In this report, we will look at ensembles of one-particle systems.

The amount of particles will be finite or infinite. We will in

particular look at examples where the one-particle Hilbert space

is finite dimensional, but the results still apply to systems with

infinite dimensional Hilbert space for each particle. As a result

we will see that in the thermodynamical limit of infinitely many

particles, the system can be described using classical physics.

18.1 Introduction

Note added: This talk is based on the following references [1, 2].

First of all, we need definitions for the different kinds of symmetries that we

will use. Let us denote D as the space of observables of a one-particle system.

The space of observables of a multi-particle system can be written as the tensor

product of D with itself: Dn :=
⊗nD. We call an observable of the n-particle

quantum system symmetric, if it is equal to its own symmetrisation. For an

observable A ∈ Dn that can be written as a product A = A1 ⊗ · · · ⊗ An we will

define the symmetrisation of A as

symn(A1 ⊗ · · · ⊗ An) =
1

n!

∑
π∈Sn

Aπ(1)⊗ · · · ⊗ Aπ(n) (18.1)

and A will be called symmetric if it satisfies A = symn(A).
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18.2 Symmetric sequence

In general, the symmetrisation operator is defined as the continuous linear ex-

tension of the definition symn(A1 ⊗ · · · ⊗ An) = 1/n!
∑

π Aπ(1)⊗ · · · ⊗ Aπ(n).

18.2 Symmetric sequence

We call a sequence of observables a symmetric sequence if the elements of the

sequence can be written as symmetrisation of previous elements, apart from the

first few elements:

∃n0 : ∀k ≥ n0, n > k An = symn(Ak) (18.2)

This is more strict than just requiring that each element is symmetric. We will

denote the set of symmetric sequences as Y . The first elements of the sequence

might not fulfil the condition. For example if we are looking at a hamiltonian

that includes nearest neighbor interaction (of two particles) as well as next nearest

neighbor interaction (of four particles), then we obviously can’t write H4 as the

symmetrisation of H2.

A sequence X is called approximately symmetric if

Xn = symn(Xk) for all k and (18.3)

∀ε > 0 ∃Y ∈ Y ∃n0 ∀n > n0 ‖Xn − Yn‖ < ε (18.4)

Mean field Hamiltonians are not always symmetric sequences. However, it is

sufficient if the Hamiltonian is approximately symmetric. The results will still

apply.

18.2.1 Examples

An example of a symmetric sequence of Hamiltonians are mean field Hamiltonians

of the form

Hn =
1

n

∑
i

hi +
1

n(n− 1)

∑
i 6=j

Vij (18.5)

where hi is a one-particle hamiltonian and Vij is the ineraction potential. The

one-particle hamiltonian can be absorbed in the potential by defining the two-

particle potential

V = V12 +
1

2
(h⊗ 1 + 1⊗ h) (18.6)

Note that these Hamiltonians are normalized to be intensive quantities. One

could regard it as a Hamiltonian density. We have to normalize the Hamiltonians
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if we want to take the thermodynamic limit, otherwise there would be an infinite

ground state energy.

An example for an approximately symmetric sequence is the classical Ising Hamil-

tonian, which is of the form

H = J(
1

n

∑
i

si)
2 =

J

n2

∑
i,j

sisj (18.7)

We can rewrite this as

H = J(
1

n(n− 1)
− 1

n2(n− 1)
)
∑
i,j

sisj (18.8)

The first term can be recognized as a symmetric Hamiltonian. The second term

will vanish at the order 1/n as there are only n2 terms in the sum.

18.3 Symmetric product

On the space of symmetric sequences Y we can define two different types of

products. One is the normal operator product. The other one is the symmetric

product. We will see later that they are asymptotically identical. We define the

symmetric product of two observables as follows:

? : Y × Y → Y (18.9)

Xa ? Yb = syma+b(Xa ⊗ Yb) (18.10)

The symmetric product ? is commutative. With this definition, we can write a

symmetric sequence as

Xn = Xk ? 1n−k (18.11)

For the ? product of two symmetric sequence, it does not matter which elements

of the sequence we choose.

(X ? Y )n = Xm ? Yn−m = (Xk ? 1m−k) ? Yn−m = Xk ? Yn−k (18.12)

Lemma

Let X, Y ∈ Y and k,m ∈ N Then for n ≥ k +m

‖XnYn − (X ? Y )n‖ ≤ k ∗m/n < ‖Xk‖ ∗ ‖Ym‖ (18.13)

Proof
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18.3 Symmetric product

Let απ ∈ Aut(Dn) denote the action of the permutation π on Dn.

Then

Xn = symn(Xk) =
1

n!

∑
π

απ(Xk) (18.14)

Likewise, Yn can be written in the same way. The product of the two is

XnYn =

(
1

n!

)2∑
π,π′

απ(Xk)απ′(Ym) (18.15)

(X ? Y )n is represented by the sum over only those terms in the same sum, for

which π({1, k}) ∩ π′({1,m}) = ∅.
Let wn(k,m) denote the relative weight of these terms in the sum. Then

‖XnYn − (X ? Y )n‖ ≤ |1− wn(k,m)|‖Xk‖ ∗ ‖Ym‖ (18.16)

Thus it remains to be shown that |1− wn(k,m)| ≤ k ·m/n.

The number of permutations n such that π(1, k) ∩ π′(1,m) = ∅ does not depend

on π′. Therefore n! · wn(k,m) is the number of permutations π ∈ Sn with

π(1, . . . , k) ∩ 1, . . . ,m = ∅, (18.17)

i.e.

(
n−m
k

)
· k! · (n− k)!. (18.18)

Hence

wn(k,m) =
(n− k)! · (n−m)!

n! · (n− k −m)!
(18.19)

=
(n−m)(n−m− 1) · · · (n−m− k + 1)

n(n− 1) · · · (n− k + 1)
(18.20)

=
k−1∏
α=0

n−m− α
n− α

. (18.21)

The bound wn(k,m) ≤ 1−k ·m/n is obviously true for k = 0 or m = 0. Therefore

we may assume m ≥ 1 and proceed by induction over k. Using the induction

hypothesis we find

wn(k + 1,m) = wn(k,m) · (1−m/(n− k)) (18.22)

≥ (1− k ·m/n)(1−m/(n− k)) (18.23)

= 1−m(k + 1)/n+
k ·m(m− 1)

n(n− k)
(18.24)

≥ 1−m(k + 1)/n, as long asn > k. (18.25)
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In the thermodynamical limit the product of operators converges towards the

symmetric product of these. The system therefore behaves classically and we get

for observables A and B, the expectation value of A ·B is

〈A ·B〉 = 〈A〉 · 〈B〉 (18.26)

Another corollary is that every state of the infinite particle system can be written

as a convex combination of pure states. In the finite particle case, this is of course

always the case, however it is not trivial in the infinite particle case. It can also

be shown that the physical states of the infinite particle system are equivalent to

the one particle mixed-states.

18.4 Conclusion

We looked at mean-field systems and saw that in the thermodynamical limit

they can be described classically. The density matrix of the infinite system can

be collapsed to one of a one particle system, giving us a pure or mixed state

describing the entire system.

283



18.4 Conclusion

284



Bibliography

[1] G. A. Raggio and R. F. Werner, Quantum statistical mechanics of general

mean eld systems., Helv. Phys. Acta 62, 980 (1989).

[2] T. Dorlas, Statistical Mechanics: Fundamentals and Model Solutions (Taylor

Francis, 1999).

285



BIBLIOGRAPHY

286



Chapter 19

Bose-Einstein Condensates and

the Gross-Pitaevskii Equation

Arne Hansen
supervisor: Gang Zhou

This talk is about Bose condensates and their description by

the Gross Pitaevskii equation. Once the basic concepts have

been introduced, the aim will be to outline a rigorous mathemat-

ical proof that the theory developed by Gross Pitaevskii actually

yields the physical density and ground state energy. The proof

was first published in [1] and later summarized in [2].

19.1 Bose Einstein Condensation from Quan-

tum Statistical Physics

A Bose Einstein condensate is an N Boson system, where the particle number N

is of the order 1023, that is characterized by a macroscopically occupied quantum

state. That is to say the occupation number of one particular quantum state is

of the order of the total particle number. The gas is therefore largely coherent

and quantum mechanical effects become macroscopically observable.

First I want to sketch, how the macroscopically occupied ground state can be

derived from quantum statistical mechanics. In a second step we assume that

the system under consideration is characterized by a condensate state. We will

use this feature to simplify the Hamiltonian. On this basis one can then introduce

the Gross-Pitaevskii approach (in the following denoted by GP) allowing us to

describe non-uniform gases in an external potential.
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19.1 Bose Einstein Condensation from Quantum Statistical Physics

The challenge is to tackle a large number of particles N ∼ 1023. To do so we

use the technique of statistical mechanics deriving the thermodynamic properties

from the appropriate partition function. In our case this is the grand canonical

ensemble.

19.1.1 The grand canonical ensemble

In order to introduce the grand canonical partition function we will need the

canonical partition function. For an N particle quantum system the canonical

partition function is

ZN = tr e−βH (19.1)

The canonical partition function is used to describe systems with fixed volume,

particle number and temperature. Instead of fixing the particle number we can

now restrict the chemical potential µ and introduce the grand canonical partition

function by summing over the particle number

Ξ(β, µ) =
∞∑
N=0

zNZN =
∞∑
N=0

eβµN
(
trN e−βH

)
(19.2)

where z = eβµ is the called fugacity. The index of the trace indicates that the

trace is to be taken in the Hilbertspace H⊗N , whereas the state corresponding to

the grand canonical ensemble is an element of the Fock space since its particle

number is not fixed.

The corresponding thermodynamic potential is given by the grand canonical po-

tential

Ω = E − TS − µ (19.3)

Ω can be calculated from Ξ using

Ω = −kBT log Ξ (19.4)

From this we obtain entities such as the average particle number and the entropy

S = −∂Ω

∂T
(19.5)

〈N〉 = −∂Ω

∂µ
(19.6)
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19.1.2 The ideal Quantum Gas

If we now restrict ourselves to an ideal quantum gas, i.e. to a set N non-

interacting particles, the Hamiltonian becomes a sum of N one-particle Hamilto-

nian H
(1)
i

H =
∑
i

H
(1)
i (19.7)

Reformulating N =
∑

i ni we can now actually calculate the grand canonical

partition function to be

Ξ =
∞∑
N=0

zNZN =
∞∑
N=0

zN
∑

n1,n2,...
n1+n2+...=N

e−β
∑N
k=1 εknk

=
∑
N≥0

∑
n0,n1,n2,...

n0+n1+n2+...=N︸ ︷︷ ︸
=
∑
n0,n1,n2,...

exp

(
β
∑
i

ni

)
exp

(
−β
∑
k

εknk

)
=
∞∏
i=0

∑
ni

exp (−β(εi − µ)ni)

=
∏
i

1

1− eβ(εi−µ)

(19.8)

The first 4 steps are just rewriting the sums and products. The final expression

follows by solving the geometric series for each ni. Equation 19.4 yields a formula

for the grand canonical potential

Ω = kBT
∑
i

log
(
1− eβ(µ−εi)

)
(19.9)

Using 19.6 we obtain for the average particle number

〈N〉 =
∑
i

1

exp [β(εi − µ)]− 1
(19.10)

Furthermore the average particle number for the individual energy states are

〈nk〉 =
1

β

∂

∂εk

∑
i

log Ξ =
1

exp [β(εk − µ]− 1
(19.11)

So far we have not specified the form of the Hamiltonian apart from the restriction

that the particles do not interact with each other. To proceed we further assume

that these are free particles in a box of finite length L with periodic boundary

conditions. The Hamiltonian is then explicitly given by
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H =
1

2m

N∑
i=1

~p2
i (19.12)

The eigen-states are plain waves with ~p = 2π~~n/L with ~n ∈ Z3 and eigen-energies

~p2/2m.

Now we are able to calculate the density in the thermodynamic limit, taking

L → ∞ while keeping ρ := 〈N〉
L3 fixed. The sum 19.10 can be turned into an

integral, 1/L3
∑

~p → 1/(2π~)3
∫

d~p . If we restrict µ < ε0 = 0, we obtain

ρ =
〈N〉
L3

= lim
L→∞

〈N〉
L3

=
1

(2π~)3

∫
d~p

1

exp [β(~p2/(2m)− µ)]− 1
(19.13)

This is a monotonously increasing function in µ. Consider now the limiting case

µ→ 0.

ρc := lim
µ→0

ρ = h−3

∫
d~p

1

exp(β~p2/(2m))− 1

=
4π

h3

∫ ∞
0

dp
p2

exp(p2/(2m))− 1

=

(
2π~2β

m

)−3/2

g3/2(1)

(19.14)

Here we use the Bose function

gp(z) =
1

Γ(p)

∫ ∞
0

dx xp−1 1

z−1ex − 1
=
∞∑
l=1

zl

lp
(19.15)

with z = eβµ as above. Thus we get an upper bound to the density ρ ≤ ρc. From

a physical perspective this behavior seems awkward. Since we are dealing with

non-interacting bosons we would expect that an upper limit to the density.

Einstein solved this dilemma by assuming that additional particles, i.e. those

that would have caused the density to exceed this value, go to the ground state.

Mathematically this amounts to simultaneously taking the limit µ→ 0 as L→∞
instead of taking the two limits one after another.

19.2 The weakly-interacting Bose-gas

For the following to chapters I will follow chapters 4 and 5 in [3].

So far the particles have been independent from one another. We now want to

introduce a weak interaction between them. In case we are dealing with a dilute
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Figure 19.1: The Bose function g3/2. For a fixed temperature T we consider the

limit µ→ 0, i.e. z → 1.

Bose-Einstein condensate, we can apply the Bogoliubov prescription and sim-

plify the interaction potential in order to reduce the complexity of our theory.

This will turn out to be the starting point for the Gross-Pitaevskii approach.

The Hamiltonian of a system of interacting particle is of the form

H =

∫
d~r

(
~2

2m
∇ψ̂†∇ψ̂

)
+

1

2

∫
d~r

∫
d~r′
(
ψ̂†ψ̂′

†
V (~r′ − ~r)ψ̂ψ̂′

)
(19.16)

Since we are dealing with a translation invariant theory the field operator1 the

Fourier transform ψ̂ takes the simple form

ψ̂ =
∑
~p

â†~p
1√
V
ei~p·~r/~ (19.17)

if we restrict our problem to a finite volume V .

With this we get the Hamiltonian in momentum space

H =
∑
~p

p2

2m
â†~pâ~p +

1

2V

∑
~p1,~p2,~q

V~qâ
†
~p1+~qâ

†
~p2−~qâ~p1 â~p2 (19.18)

1Quantum field operators ψ̂†(~r) (ψ̂(~r)) create (annihilate) a particle at position ~r. In order

to quantize the theory one postulates the usual commutation (anti-commutation) relations for

Bosons (Fermions).
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where V~q =
∫

d~r V (~r)e−i~p·~r/~. The aim is now to simplify this for the description

of a Bose-Einstein condensate.

19.2.1 Reducing the interaction potential

Since we are only interested in macroscopic properties of the gas and not what

actually happens during the interaction, we assume the gas to be dilute, i.e.

that the mean inter-particle distance is much larger than the scattering length

of the potential, |a| � n−1/3. This permits to replace V by an effective soft

potential Veff and apply perturbation theory. Further we can assume that only

small momenta and hence small momenta differences contribute. Therefore it is

sufficient to consider only the term with q = 0 for which the potential becomes

V0 =

∫
d~r Veff =: g (19.19)

This is just a mean field approximation of the interaction potential.

It turns out that we can express g in terms of the scattering length a

g =
4π~2a

m
(19.20)

19.2.2 Bogoliubov prescription

Bogoliubov’s approach allows us to reduce the field operators to classical fields.

To motivate this one writes the field operator in terms of the creation and anni-

hilation operators, âi and â†i , and the single particle eigenfunctions φi(~r) of the

Hamiltonian. Further we separate the ground state from the excited states

ψ̂(~r) =
∑
i

φiâi = φ0â0 +
∑
i 6=0

φiâi (19.21)

In the case of BEC we have N0 = 〈â†0â0〉 = 〈φBEC | â†0â0 | φBEC〉 � 1, i.e.

â0 and â†0 are of order
√
N0 � 1 whereas 1 = [â0, â

†
0] = 〈φBEC | [â0, â

†
0] |

φBEC〉. Therefore we neglect the commutation relations and set the ground state

operators to be c-numbers

â0 =
√
N0 â†0 =

√
N0 (19.22)

The actual values
√
N0 follows from the condition, that the expectation value of

the ground state occupation number should still be N0.

With this we get
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ψ̂(~r) = ψ0(~r) + δψ̂(~r) (19.23)

where ψ0 =
√
N0φ0 and δψ̂ =

∑
i 6=0 φiâi. If the number of particles in excited

states is negligible, the operator term can be dropped. This is the case for a dilute

Bose gas at low temperatures since the thermal and the quantum depletion are

small. What remains is the classical field associated to the ground state.

This approximation is not mathematical sound. Therefore we still have to show

that it will yield a reasonable result. This is the subject of the last part.

Note that as we move to a classical field abandoning the commutation relations

we fix the total particle number.∫
d~r n(~r) =

∫
d~r 〈ψ̂†(~r)ψ̂(~r)〉 = N0

∫
d~r |φ0(~r)|2 = N0 (19.24)

In the Bogoliubov prescription the one-particle density matrix takes the simple

form

ρ(1)(~r, ~r′) = 〈ψ̂†(~r)ψ̂(~r′)〉 = 〈Ψ | (φ∗0(~r)φ0(~r′)â†0â0) | Ψ〉
= N0φ

∗
0(~r)φ0(~r′)〈Ψ | Ψ〉 = N0φ

∗
0(~r)φ0(~r′)

(19.25)

The steps we took above, namely the Bogoliubov prescription and the simplifica-

tion of the interaction, will be essential in deriving the Gross-Pitaevskii equation.

Besides the methodical importance the theory above yields some interesting re-

sults. If we insert the simplified field operator ψ̂ =
√
N into the energy expecta-

tion value assuming that the vast majority of the particles is in the condensed

state we find the ground energy to be

E0 =
N2V0

2V
6= 0 (19.26)

This differs from the result in the previous chapter as the value is no longer zero.

Furthermore we can consider the pressure of the gas

P = −∂E0

∂V
=
N2V0

2V 2
=
V0n

2

2
(19.27)

where n = N/V is the density. The pressure does therefore not vanish anymore

for T → 0 as it has been the case for the ideal Bose gas.

19.3 The Gross-Pitaevskii approach

The aim is to develop a theory for a non-uniform dilute Bose gas such as gases

in a trap. Most of the steps from above will be repeated. But when applying the
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Bogoliubov prescription we can no longer drop the one-particle wave functions φi
since we lost translation invariance.

19.3.1 The Gross-Pitaevskii equation

Starting from the assumption that the gas will be characterized by a macro-

scopically occupied ground state, the Bogoliubov prescription 19.2.2 is applied.

The ground state annihilation and creation operators, ψ̂(~r, t) and ψ̂†(~r, t), are re-

placed by classical fields, ψ(~r, t) and ψ∗(~r, t). Further the interaction of particles

is simplified using a soft potential as above. The crucial difference is to introduce

an external potential and to derive equations of motion for the classical fields

describing the state of the gas.

From the Heisenberg picture

The equations of motion for this classical field can be derived from the equations

of motions for the field operator ψ̂(~r, t) in the Heisenberg picture.

i~
∂

∂t
ψ̂(~r, t) =

[
ψ̂(~r, t), Ĥ

]
=

(
−~∇2

2m
+ Vext(~r, t) +

∫
d~r′ψ̂†(~r′, t)V (~r′ − ~r)ψ̂(~r′, t)

)
ψ̂(~r, t)

(19.28)

As above the quantum field operators are now replaced by classical field and the

interaction term is approximated by perturbation on an effective soft potential.

Further we assume that ψ varies slowly over ranges of the order of the interaction

potential. Consequently the integral of the third summand is decoupled. Finally

we are left with the Gross-Pitaevskii equation

i~
∂

∂t
ψ0(~r, t) =

(
−~2∇2

2m
+ Vext + g |ψ0(~r, t)|2

)
ψ0(~r, t) (19.29)

where g =
∫

d~r Veff.

Time-independent equation

If we set ψ0(~r, t) = ψ0(~r)e−iµt/~, where µ = ∂E
∂N

, the GP equation reduces to(
−~2∇2

2m
+ Vext − µ+ g |ψ0(~r)|2

)
ψ0(~r) = 0 (19.30)
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The question arises why the time-evolution should be governed by the chemical

potential µ and not by the energy. To understand this we have to return to the

Bogoliubov prescription. If we consider the expectation value of the field operator

ψ̂ after having reduced to classical fields, we obtain on the one hand

〈ψ̂〉 = 〈N |
√
Nφ0|N〉 =

√
Nφ0 = ψ 6= 0 (19.31)

On the other hand we know the time evolution of the N particle state

|N(t)〉 = e−iE(N)t/~|N〉 (19.32)

Combining these two equations we get the time evolution of the reduced field

ψ(t) =
√
Nφ0(t)

Bog.
= 〈ψ̂〉(t) = 〈N(t)|(N − 1)(t)〉

= 〈N |N − 1〉e−i(E(N)−E(N−1))t/~

If we approximate

E(N)− E(N − 1) =
E(N)− E(N − 1)

N − (N − 1)
∼ ∂E

∂N
= µ

we obtain

ψ(t) = 〈ψ̂〉e−iµt/~ Bog.
= ψe−iµt/~ (19.33)

Recalling the derivation of BEC from quantum statistical mechanics this is what

we should actually expect: the chemical potential is key entity in the description

of the Bose gas. We can see that from a slightly different perspective if we use an

alternative, variational approach in deriving the time-independent GP equation.

Variational approach to the time-independent equation

Instead of using the Heisenberg equation we could as well consider the energy

functional

E[ψ] =

∫
d~r

(
~2

2m
|∇ψ|2 + Vext(~r) |ψ|2 +

g

2
|ψ|4

)
(19.34)

We want to find the minimizing field under the normalizing condition
∫

d~r |ψ|2 =

N , which we got from the Bogoliubov prescription. To solve this problem we need

to introduce a Lagrange multiplier, that will turn out to be µ. The equation we

have to deal with is

δ(E − µN)

δψ∗
= 0 (19.35)

295



19.3 The Gross-Pitaevskii approach

The Lagrange multiplier is determined by

µ =
dE

dN
(19.36)

This is just the definition of the chemical potential from above.

19.3.2 Analogy to electrodynamics

The Bogoliubov prescription has an analogon in electrodynamics. If a large num-

ber of photons is in approximately the same quantum state small fluctuations

of the photon number do not matter anymore. It is then permitted to consider

the classical instead of the quantum field, i.e. to apply classical electrodynamics

instead of quantum field theory. The equations of motion for this “large occupa-

tion number limit” are given by the Maxwell equations in electrodynamics and

correspondingly by Gross-Pitaevskii equation for BEC.

19.3.3 Applicability of the Gross-Pitaevskii equation

Applying the Bogoliubov prescription requires a largely occupied ground state.

Further the contribution of the remaining eigenstates can only be neglected if

these are hardly occupied. This is the case for a dilute, cold Bose gas, as thermal

and quantum depletion are small. The diluteness is further required to simplify

the interactions.

19.3.4 The many-body wave function and one-particle

density matrix

Assuming the gas to be dilute allows to neglect interactions in a first approxima-

tion. The many body wave function is then given by the symmetrized product

of wave functions

ΨGP (~r1, ~r2, . . . , ~rN) =

(
1√
N
ψGP (~r1)

)(
1√
N
ψGP (~r2)

)
· · ·
(

1√
N
ψGP (~rN)

)
(19.37)

where ψGP is the solution of the GP equation. The normalization 1√
N

is due to

choice of ψ while applying the Bogoliubov prescription.From the general formula

in the Bogoliubov prescription 19.25, we directly obtain the one-particle density

matrix if we set φ0 = 1√
N
ψGP :

ρ̃GP (~r, ~r′) = ψGP (~r)∗ψGP (~r′) (19.38)
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Example: the homogeneous Bose gas The simplest case is to set V =

0. Further we assume the gas to be homogeneous within a box of Volume V .

Therefore the first term drops too. The GP equation 19.30 reduces to

µ = g
∣∣ψGP ∣∣2 = gρ̃(~r, ~r) = g

N

V
(19.39)

The corresponding energy is

E = g
N2

V
(19.40)

19.4 Mathematical rigorous foundation of the

GP theory

In the preceding part introducing the GP approach approximations have rather

been based on physical intuition than mathematical rigorous arguments. Leib,

Seiringer, Yngvason addressed this problem in their article Bosons in a trap: A

rigorous derivation of the Gross-Pitaevskii energy functional [1].

The authors prove for the time-independent case that the ground state energy and

the density derived from the GP equation in the thermodynamic limit converges

to the physical density matrix.2

Theorem 19.1 (GP limit of the QM ground state energy and density). If N →
∞ with Na fixed, with a being the scattering length, then

lim
N→∞

E0(N, a)

EGP (N, a)
= 1 (19.41)

and

lim
N→∞

1

N
ρQMN,a (~r) = ρGP1,Na(~r) (19.42)

in the weak L1 sense. The densities are the diagonal elements of the corresponding

matrix ρGPN,a(~r) = ρ̃(~r, ~r).

Further the single components of the GP energy, i.e. the kinetic term, the inter-

action and the external potential contribution, converge separately to the corre-

sponding counterparts of the physical ground state energy.

2The article is summarized in chapter 6 of [2]. In this section I follow mostly this source.

For details I took into account the original article [1].
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Scaling properties

Before sketching the proof of the theorem stated above I will briefly remark on

scaling properties of the system, particularly as the particle number is varied.

The GP energy, i.e. 19.34 evaluated for ψGPN,a, and the GP solution ψGPN,a itself

scale as

EGP (N, a) = NEGP (1, Na) (19.43)

ψGPN,a(~r) =
√
NψGP1,Na(~r) (19.44)

Hence it seems natural to fix Na, as done in the theorem. This yields

EGP ∼ N ψGPN,a ∼
√
N (19.45)

Proof

The proof of 19.41 consists of two parts. These are to find upper and lower

bounds on E0 in terms of EGP such that the bounds converge to E0 in the limit

N →∞. Once we have shown the convergence of the GP energy, the convergence

of the density can be obtained from a variational derivation. Since the proof is

very technical I will only sketch the first part here.

In the following we will set ~, µ and m to one.

Part 1: Upper bound. In general the expectation value of the energy of any quan-

tum state of the respective Hilbert space is an upper bound to the ground state

energy E0. The challenge is to find an appropriate state, such that one on the

one hand finds a relation to EGP and on the other hand convergence in the

thermodynamic limit. In other words we aim to show that

EQM(N, a) ≤ EGP (N, a)(1 +O(aρ̄1/3)) (19.46)

where

ρ̄ =
1

N

∫
d~r
∣∣ρGPN,a(~r)∣∣2 (19.47)

is the mean density. It scales as N−2 since ρGPN,a ∼ N and Na fixed i.e. a ∼ N−1.

This yields the desired behavior of 19.46 in the thermodynamic limit.
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Ansatz for an appropriate trial state We start by extending ΨGP from

19.37. ΨGP describes a set of independent particles. Now we assume that the

particles are inserted one after another and are affected by the closest of the

previously inserted particles. The wave functions of the particles that are already

present do not change as a new particle is inserted. Like this we take into account

the leading term in the energy of dilute systems. This amounts to the following

definition

Φ = F (~r1, . . . , ~rN)G(~r1, . . . , ~rN) (19.48)

where

F (~r1, . . . , ~rN) =
N∏
i=1

Fi(~r1, . . . , ~rN) (19.49)

G(~r1, . . . , ~rN) =
N∏
i=1

g(xi) =
N∏
i=1

ψGP (~ri)

‖ψGP‖∞
(19.50)

The functions Fi depend on the distance to the closest particle with index j < i.

Fi(~r1, . . . , ~rN) = f(ti)

ti = min {|~ri − ~rj| , j = 1, . . . , i− 1}
0 ≤ f ≤ 1 f ′ ≥ 0

(19.51)

Note that while G is inherently symmetric, this is not necessarily true for F .

Nevertheless the expectation value

〈Φ | HN | Φ〉
〈Φ | Φ〉

(19.52)

is an upper bound to the bosonic ground-state energy since this is the absolute

ground state energy of any extended Hilbert space also containing non-symmetric

states.

The energy expectation value The next step is to calculate the energy

expectation value 19.52 for

HN =
N∑
i=1

(
−∇2

i + Vext(~ri)
)

+
∑
i<j

v (|~ri − ~rj|) (19.53)

299



19.5 Conclusion

Using zero energy scattering one can fix the function f(t). This allows to perform

the rather tedious steps to explicitly calculate the expectation value yielding the

wanted result.

19.5 Conclusion

With the Gross-Pitaevskii equation we have found a way to describe a Bose

condensate with a classical field. In deriving the equation we have approximated

the field operators and the interaction. This can be justified as one can proof the

convergence of the GP energy and density to the physical entities in the limit

N →∞.
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Chapter 20

Time Evolution of Open

Quantum Systems

Claudio Paganini
supervisor: Dr. Martin Fraas

About the paper of G. Lindblad ”On the Generators of Quantum

Dynamical Semigroups” [1]

20.1 Introduction

In this chapter we will focus on the mathematical background of the time evolu-

tion of an open system in general and not on the solution of a specific physical

problem. The main mathematical objects we are going to discuss are (semi-)

groups and their generators.

These semigroups are further constrained by physical requirements as for exam-

ple the conservation of probability. In particular we will take a look at positivity

preserving semigroups.

The Paper of G. Lindblad treats all the details, that have to be considered for

a rigorous proof in infinite dimensions but for simplicity we will treat only fi-

nite Hilbert-spaces in this chapter. So H = Cn and B(H) the space of all linear

bounded operators on H is simply the space of all n×n matrices.
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20.2 Time Evolution of a Closed Quantum Sys-

tem

First we want to take a look at the case of a closed system. This will be conducted

with the aim to show the different steps we have to take into consideration later

when we are going to treat the case of the open system.

To get an insight into the methods we will later use on the open system we will

now treat the closed system in the same mathematical way.

We can write our time dependent wave function as

ψ(t) = U(t)ψ0 . (20.1)

This implies directly

U(t) |t=0= I . (20.2)

Further more we demand U(t) to conserve probability which means that for

〈ψ0 | ψ0〉 = 1

〈U(t)ψ0 | U(t)ψ0〉 = 1 = 〈ψ0 | U(t)∗U(t)ψ0〉 . (20.3)

So U(t) is unitary, which means that

U(t)∗U(t) = I and U(−t) = U(t)−1 = U(t)∗ . (20.4)

We also demand any physical time evolution to fulfil the condition:

U(t)U(s) = U(s+ t) . (20.5)

This is a direct consequence of the requirement for the process to be Markovian.

We will later explain the detailed nature of Markovian processes. But Markovian-

ity basically tells us, that if two states at times t1 and t2 are equal, the respective

states at t1 + ∆t and t2 + ∆t will be equal. So for t1 = t2 if

ψ0 = U(−t)ψt , (20.6)

then we know that at a time t = s+ t we get the following equation

U(s+ t)ψ0 = U(s)ψt (20.7)

and we can see that the equation (20.5) holds. We can then prove the following

statement:
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Theorem of Stone: Every U(t) that satisfies the conditions (20.1) to (20.5)can

be written as

U(t) = e−ıtA . (20.8)

Where A ∈ B(H) is a self-adjoint operator.

Proof: U(t) is continuous in t because of (20.5). It follows that U(t) fulfils

the following differential equation:

U̇(t)ψ = AU(t)ψ , (20.9)

where A = δUU∗ and you can prove using equation(20.5) that such an A is

time independent. From equation (20.9) the statement follows. So we have

shown that {U(t) | t ∈ <} ∈ B(H) forms a continuous one parameter group. In a

Hamiltonian system (20.9) is simply the Schrödinger equation and the self-adjoint

operator A is the Hamilton operator −ıH of the system.

20.3 General Form of the Time Evolution of

an Open Quantum System

We want to go now from a closed system into an open one, describing irreversible

time evolution.

20.3.1 Markovian Statistical Process

The following discussions are limited to Markovian quantum systems. A Marko-

vian quantum system is a system for which the time evolution does not depend

on the history of the system, but only on its current state.

An example for a Markovian statistical process is the so called ”drunken sailor”:

x0

-4 -3 -2 -1 0 1 2 3 4

Table 20.1: The Drunken sailor is at t = 0 at position x0

The drunken sailor lives in an one dimensional world and in each time step,
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he goes either one step to the left or one step to the right of his current position

with equal probability. The probability for the sailor to be at a position x after a

certain time t depends only on the probability distribution of the sailor at t = 0

and on t. Here it is important to stress again, that the probability does not de-

pend on the way the probability distribution at t = 0 was achieved. Furthermore

shifting t = 0 in time will not change the time evolution for a fixed ∆t.

An example of a non-Markovian statistical process would be the following:

Suppose we have 5 black and 5 white balls in a box, and we take them out of the

box one after another. After a ball is taken out, it is not put back into the box

for the next draw. We can arrive at two situations © ©
⊗⊗

and ©
⊗

where

the probability to take a white ball in the next step is 50% in both systems. How

ever in the step after that the probabilities of the two systems differ a lot, because

the two systems have a different history.

20.3.2 Properties of the Time Evolution in an Open

Quantum System

In general treating the open system as a subsystem of a bigger system R + S of

which the time evolution is described by unitary transformations does not lead

to a time evolution that is a proper semigroup: Even though we can write

R⊗ S ρ0 −→ U(t)ρ0U(t)∗

TrR(ρ0) TrR(U(t)ρ0U(t)∗)

S ρ′0 −→ V (t)ρ′0

,

where V (t) is in general not unitary, V (t) is in most cases not a semigroup.

However in applications is is often feasible to use Markovian approximation. We

are going to examine the general properties of a dynamical semigroup describing

such a irreversible process.

We want to start again with the physical properties we demand of any time

evolution. As in the case of a closed system we demand also for the open system

the conservation of probability. In the Schrödinger picture we have

Tr(ρ) = 1 , (20.10)

which has to be conserved under any evolution in time

Tr(φ∗t (ρ)) = 1 . (20.11)

Here it is important to see that instead of a vector ψ the time evolution is now

acting on a density matrix ρ. Equivalently we can describe the system in the
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Heisenberg picture by looking at the expectation value of any observable X

〈X〉t = Tr(Xφ∗t (ρ)) = Tr(φt(X)ρ) . (20.12)

Which then turns the condition (20.11) into

1 = 〈I〉t =⇒ φt(I) = I ∀t . (20.13)

Because we are now dealing with density matrices we also have to demand the

conservation of positivity. In the Schrödinger picture this reads

ρ ≥ 0 =⇒ φ∗t (ρ) ≥ 0 ∀t . (20.14)

For the Heisenberg picture this translates to the condition

A ≥ 0 =⇒ φt(A) ≥ 0 ∀t , (20.15)

where A ∈ B(H). As before we also demand the time evolution to be Markovian,

so as before in the closed system to fulfil

φsφt = φs+t (20.16)

and we also demand at t = 0

φ0(X) = X (20.17)

to be the identical map.

We then get for the Schrödinger picture the following differential equation

ρ̇ = L∗ρ , (20.18)

where

ρ(t) = φt(ρ0) and φt = exp(tL∗) . (20.19)

In the Hamiltonian case this is simply the Liouville equation

ρ̇ = −ı [H, ρ]

where L∗(ρ) = −ı [H, ρ]

giving us φt(X) = eıtHXe−ıtH . (20.20)

Where H is the Hamiltonian of the system or, to stress the mathematical picture

again, in general a self-adjoint operator on the Hilbert space of the system.

For further considerations we switch now definitely to the Heisenberg picture. So

to sum up, we are looking for a one parameter family of maps φt : B(H)→ B(H)

with:
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a) φt is positive

b) φt(I) = I
c) φsφt = φs+t
d) φt(X) −−→

t→0
X or for finite dimensions φ0(X) = X

with φt = exp(tL). An important remark here: it is the central semigroup prop-

erty that if φt ∈ G then φ−t = φ−1
t /∈ G which is basically directly stating the

irreversibility of the time evolution.

20.3.3 Theorem of Lindblad

We want to show now which general form L takes in a non-Hamiltonian system.

To get a better understanding of the steps taken in the proof later on we first

what to sketch an overview of the proof and picture how the different steps of

the proof are connected to each other.

(Group of CP maps) → acts on B(H)

↖ exp(t∗) ↑ acts on

(Group of CD maps)

⇓
{CP} ⊃ exp(t {CD}) explicit form of group elements

Table 20.2: Overview of the different elements used in the proof and their relations

We showed before that for the time evolution of open systems we have to examine

the group of the completely positive (CP) maps, which contains all maps that

fulfil the requirements a)- d) from above, except that we replace the condition of

positivity by the stronger condition of complete positivity. The difference will be

shown in the next section.

What we want to show is, that every element in this group of the CP maps,can

be written in terms of a generator L ∈ Group of the complete dissipative maps

(nowadays this property is called Lindbladian because of this paper where Lind-

blad described this properties for the first time properly), with φt = exp(tL).

In the first step we are going to examine the properties of the group of CP maps.

In a second step we will then examine the properties of CD maps. We will then

show, that every element in CD corresponds to a one parameter family in CP

and in a final step we will show the general form every element of the group of

CD maps takes.

The final statement we want to prove is the following:
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Theorem: Every element of a norm continuous semigroup that fulfils the con-

ditions a)-d) can be written in terms of a generator as φt = exp(tL) where L is

of the following form:

Heisenberg picture L(X) =
∑
j

(
V †j XVj −

1

2

{
V †j Vj, X

})
+ ı [H,X] , (20.21)

where Vj,
∑
j

V †j Vj ∈ B(H), H self-adjoint ∈ B(H).

Schrödinger picture L∗(ρ) =
∑
j

([
Vjρ, V

†
j

]
+
[
Vj, ρV

†
j

])
− ı [H, ρ] (20.22)

Where we stated the form in the Schrödinger picture just for completeness and

[A,B] = AB − BA, {A,B} = AB + BA are the usual commutator and anti-

commutator.

20.3.4 Complete Positive Maps

First of all we will show why we need to demand the property of complete posi-

tivity instead of simple positivity. To illustrate the problem we take a look at a

standard example that was given in [2]. Lets take the transpose operation on a

single qubit. This map simply transposes the density operator in the computa-

tional basis (
a b

c d

)
T−→
(
a c

b d

)
(20.23)

and conserves the positivity of a single qubit. However suppose this qubit is part

of a two qubit system which is initially in the entangled state

| 00〉+ | 11〉√
2

. (20.24)

The transpose is applied to the first of these qubits, while the second one is subject

to trivial dynamics. The density operator of the system after the dynamics then

is

1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 with Eigenvalues :
(

1
2

1
2

1
2
−1

2

)
. (20.25)

So we can see immediately that even though the transpose conserves positivity

in the principle system, it does not if applied to a system which contains the

principal system as a subsystem.
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Because we are treating a an open quantum system, which in general includes an

interaction with a reservoir as for example a heath bath, we need to restrict our

dynamical semigroup to completely positive maps.

So let’s have a look at how we expand the positive map from our subsystem.

Suppose S1 and S2 are quantum systems, φ1,t : B(H1) → B(H1) the time evolu-

tion of S1 and Hi the Hilbert-space of Si.

Consider S2 to be a closed system with H2 = 0 and extend φ1 to a positive map

φ : B(H) → B(H), where H = H1 ⊗ H2 such that S2 is unaffected. If S1 is

Hamiltonian then we get from H = H1 ⊗ I2 that

φ(X ⊗ Y ) = φ1(X)⊗ Y , (20.26)

where φ1 has the form

φ1(X) = U †XU and U = eıtH . (20.27)

If S1 is non-Hamiltonian equation (20.26) still holds because of the condition

φ(X ⊗ I) = φ1(X)⊗ I and φ(I⊗ Y ) = I⊗ Y . (20.28)

For our purpose letH2 have finite dimension n. We then have B(H) 'Mn(B(H1))

where Mn(B(H1)) denotes the n × n matrix algebra over B(H1). We can then

write

φn = φ⊗ In : Mn(B(H1))→Mn(B(H1)) . (20.29)

An important remark at this point: I now denotes the identical map and not the

identity matrix.

Definition: φ : B(H) → B(H) is completely positive iff φn positive ∀n. We

then write φ ∈ CP (B(H)).

Proposition: φ : B(H)→ B(H) is CP iff there is a representation π of B(H) in

a Hilbert-space K and a bounded linear map F : H → K such that

φ(X) = F †π(X)F . (20.30)

This leads to the fact that every normalized φ ∈ CP i.e. φ(I) = I fulfils the

inequality

φ(X†)φ(X) ≤ φ(X†X) , (20.31)

which is a generalization of the Cauchy-Schwarz inequality and characterizes

every CP map.

Proof:

(φ(X†X)ψ0, ψ0) = (F †π(X)†π(X)ψ0, ψ0)

= ‖ π(X)Fψ0 ‖2

≥ ‖ F †π(X)Fψ0 ‖2

= (φ(X†)φ(X)ψ0, ψ0) . (20.32)
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We have used here that from φ(I) = I follows that ‖ F †F ‖= 1 which implies

‖ FF † ‖≤ 1.

So in this section we have learned why complete positivity is important and what

the key features of complete positive maps are.

20.3.5 Completely Dissipative maps

(Today: Lindbladian maps)

As before in the case of the complete positive maps we now want to take a look

at the definition of the complete positive maps and their central properties.

Suppose φt = exp(tL) is a norm continuous semigroup in CP(B(H) with φt(I) = I.
The extension Ln of the generator L to Mn(B(H)) is defined by Ln = L⊗ In and

consequently

φt ≡ φt ⊗ I = exp(tLn) . (20.33)

Differentiation of the inequality (20.32) at t = 0 gives

Ln(X†X)− Ln(X†)X −X†Ln(X) ≥ 0 ∀X ∈Mn(B(H)) . (20.34)

It follows directly that Ln(I) = 0 and Ln(X†) = Ln(X)†. We now introduce the

dissipation function D(L) : B(H)× B(H)→ B(H)

D(L;X, Y ) = Ln(X†Y )− Ln(X†)Y −X†Ln(Y ) . (20.35)

Definition: If a bounded map L : B(H)→ B(H) satisfies

L(I) = 0

L(X†) = L(X)† ∀X ∈ B(H)

and D(Ln;X,X) ≥ 0 ∀X ∈Mn(B(H)) ∀n , (20.36)

then L is called completely dissipative and we write L ∈ CD (B(H)).

So now we want to show that

for every L ∈ CD ⇒ φt = exp(tL) ∈ CP and

for every φt which is a continuous one parameter semigroup in CP ∃L ∈ CD such

that φt = exp(tL).

Propsistion: Let L : B(H) → B(H) be a bounded map and put φt = exp(tL)

then (1)⇔ (2)where

(1) φt(X
†φt(X) ≤ φt(X

†X) ∀X ∈ B(H) with φt(I) = I
(2) D(L;X,X) ≥ 0 ∀X ∈ B(H) with L(I) = 0 . (20.37)
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We have already shown (1) ⇒ (2) in the beginning of this section. (2) ⇒ (1) is

more difficult and can be found in the original paper from G. Lindblad.

If we apply this to the extension Ln and φn to Mn(B(H))∀n we get that φt is a

norm continuous semigroup on B(H) iff φt = exp(tL) where L ∈CD(B(H.

So besides the properties of the group of CD maps we have also found in this

section the connection between the CP maps and the CD maps.

20.3.6 General Form of Elements in CD

Now in this last section we want to take a look at the general form L takes,

Proposition: D(L) determines L up to a Hamiltonian.

Proof: If D(L;X, Y ) = 0∀X, Y ∈ B(H) then is L called a derivative and we know

that∃Y ∈ B(H) such that L(X) = [Y,X]. Because we know that L(X†) = L(X)†

it follows that Y = ıH, where H is a self ajoint operator. So we get L(X) =

ı[H,X] and we find again the well known form for the time evolution:

φt = eıtHXe−ıtH . (20.38)

Because we know that [H,X†Y ] = [H,X†]Y −X†[H, Y ] so for an L defined like

that we get that D(L) = 0 so D(L) 6= 0 characterizes the lack of reversibility and

the deviation form a Hamiltonian system.

We can show now that there is a ψ ∈ CP B(H) and a self adjoint H ∈ B(H) such

that

L(X) = ψ(X)− 1

2
{ψ(I), X}+ ı[H,X] ∈ CD . (20.39)

The conditions L(I) = 0 and L(X†) = L(X)† are obviously fulfilled. We also

know that we can write ψ(X) = F †π(X)F where we can choose π(I) = I and we

get

ψ(X†X)+X†ψ(I)X−ψ(X†)X−X†ψ(X) = (π(X)F−FX)†(π(X)F−FX) ≥ 0 .

(20.40)

If we rearrange the terms we get D(L;X,X) ≥ 0. To show that we can find such

a representation ∀L(X) ∈ CD is more difficult and again it can be found in the

original paper.

To get to the form we headed out for, we need the following statement:

Theorem by Kraus: φ ∈ CP (B(H) iff it can be written in the following form

φ(X) =
∑
j

V †j XVj , (20.41)

where Vj,
∑
j

V †j Vj ∈ B(H).

If we plug this into equation (20.39) we get the general form of the generator as
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we proposed in the beginning.

L(X) =
∑
j

(
V †j XVj −

1

2

{
V †j Vj, X

})
+ ı [H,X] , (20.42)

where Vj,
∑
j

V †j Vj ∈ B(H), H self-adjoint ∈ B(H).

We have now shown, that any generator of a quantum dynamical semigroup can

be written in this specific form. This makes it now a lot easier to calculate the

time evolution of an arbitrary open quantum system because the only thing that

is left to do now is to find the appropriate Vj’s and H.

20.4 Conclusion

In his paper ”On the Generators of Quantum Dynamical Semigroups” G. Lind-

blad treated the mathematical form of the time evolution of open quantum sys-

tems rigorously. In this Section we got an overview of the proof and carried out

most of the key steps of the proof for the case of a finite dimensional Hilbert-space.

Knowing this general form one can compute now the time evolution of an open

system if we find the correct form of the Vj’s and H. To finish the report let’s

have a look at how these look like in the case of photons in a cavity:

H = (a†a+
1

2
) V † = a† V = a , (20.43)

where H is just the usual Hamiltonian for an electro-magnetic field, V † is the

creation and V is the annihilation operator for photons.

313



20.4 Conclusion

314



Bibliography

[1] G. Lindblad, On the generators of quantum dynamical semigroups, Commu-

nications in Mathematical Physics (1976).

[2] Nielsen and Chuang, Quantum computation and quantum information, 1

(Cambridge University Press, 2004).

315


