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Exercise 1. Convex Combinations

(a) Prove that any convex combination of non-signaling systems is a valid non-signaling sys-

tem. That is, for any two non-signaling systems P
(1)
AB|XY and P

(2)
AB|XY and for all p ∈ [0, 1],

consider the system QAB|XY defined by

QAB|XY (ab|xy) = p · P(1)
AB|XY (ab|xy) + (1− p) · P(2)

AB|XY (ab|xy) ∀x, y, a, b.

Show that it is a valid conditional probability distribution and that the non-signaling
conditions hold: ∑

a

QAB|XY (ab|0y) =
∑
a

QAB|XY (ab|1y) ∀b, y∑
b

QAB|XY (ab|x0) =
∑
b

QAB|XY (ab|x1) ∀a, x

Solution. We will show that a convex combination of two non-signaling systems is also a non-signaling
system. For every two non-signaling systems P

(1)

AB|XY and P
(2)

AB|XY and any p ∈ [0, 1]:

1. for all x, y, a, b, QAB|XY (ab|xy) ≥ 0 since P
(1)

AB|XY (ab|xy) ≥ 0, P
(2)

AB|XY (ab|xy) ≥ 0 and 1 ≥ p ≥ 0

2. for all x, y, ∑
a,b

QAB|XY (ab|xy) =
∑
a,b

(
p · P(1)

AB|XY (ab|xy) + (1− p) · P(2)

AB|XY (ab|xy)
)

= p
∑
a,b

P
(1)

AB|XY (ab|xy) + (1− p)
∑
a,b

P
(2)

AB|XY (ab|xy)

= p · 1 + (1− p) · 1
= 1

3. since the non-signaling conditions are linear, QAB|XY fulfills the same non-signaling conditions as

P
(1)

AB|XY and P
(2)

AB|XY .

(b) If for the CHSH game the winning probability using system P
(1)
AB|XY is w1 and the winning

probability using system P
(2)
AB|XY is w2, what is the winning probability using the system

QAB|XY as defined above?

Solution. One way to think about the convex combination of two systems, is as if Alice and Bob have

the first system, P
(1)

AB|XY , with probability p, and the second system, P
(2)

AB|XY , with probability 1 − p.

Therefore, the probability of winning the CHSH game with the system QAB|XY is the convex combination

of the two winning probabilities, i.e., p · w1 + (1− p) · w2.

In the exercise class, we have considered the PR-box (left) and the quantum system QAB|XY

(right) which are given by the measurement statistics displayed in the following tables:
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(c) Denote by D
(i,j)
AB|XY the deterministic strategy which outputs (i, j) for every input. For

example D
(0,0)
AB|XY (00|xy) = 1 for every x, y. Find p ∈ [0, 1] such that the quantum system

above is given by

QAB|XY (ab|xy) = (1− p) · PRAB|XY (ab|xy) +
∑
(i,j)

p

4
·D(i,j)

AB|XY (ab|xy) ∀x, y, a, b

where PRAB|XY is the perfect PR-box.

Solution. Consider for example the first entry in the table QAB|XY (00|00). The only deterministic

system which affects this entry in the convex combination is the system D
(0,0)

AB|XY . Therefore we must have

(1− p) · 0 +
p

4
=

sin2
(
π
8

)
2

which means that p = 2sin2
(
π
8

)
. You can verify that this choice of p is also good for all the other entries

of the table.

Exercise 2. IP Game

Consider the following game. Alice gets a bit string x ∈ {0, 1}n of length n and Bob gets a bit
string y ∈ {0, 1}n of the same length. Alice and Bob can share as many PR-boxes as they wish
and can communicate classically. The goal of the game is to calculate the following function

IP?(x, y) = (x1·y1)⊕ (x2·y2)⊕ ...⊕ (xn·yn)

where x · y is the negation of x·y , with as little communication as possible (measured in classical
bits). Only one of the parties needs to know the result of the calculation. Give a strategy for
this game which allows Alice and Bob to win the game with just one bit of communication.

Remark: The amount of communication needed for such a distributed calculation of a function
is called the communication complexity of the function. There is a classical result which shows
that the distributed calculation of any binary function can be reduced to a calculation of some
inner product function. Together with what you prove here, this implies that the communication
complexity of any binary function is at most one bit if Alice and Bob are allowed to share
PR-boxes.
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Solution. For every i ∈ {1, 2, .., n} Alice and Bob will use one PR-box. Using the i’th box, Alice and Bob will
insert the input bits xi and yi and get outputs bits ai and bi such that ai ⊕ bi = xi·yi. Now note that

IP?(x, y) = (x1·y1)⊕ (x2·y2)⊕ ...⊕ (xn·yn)

= (a1 ⊕ b1)⊕ (a2 ⊕ b2)⊕ ...⊕ (an ⊕ bn)

= (a1 ⊕ a2 ⊕ ...⊕ an)⊕ (b1 ⊕ b2 ⊕ ...⊕ bn)

and therefore Alice can calculate on her side a′ = a1 ⊕ a2 ⊕ ...⊕ an and send only this one bit to Bob. With this

bit Bob can now calculate the rest on his side by calculating a′ ⊕ (b1 ⊕ b2 ⊕ ...⊕ bn).

Exercise 3. Mermin–GHZ Game

In this game, Alice, Bob and Charlie receive input bits x, y and z, with the promise that
x⊕ y ⊕ z = 0. Their goal is to output bits a, b and c, respectively, such that

a⊕ b⊕ c = x ∨ y ∨ z.

(a) Show that there is no classical winning strategy (i.e., no classical strategy that wins with
probability one). What is the maximal probability of winning using a classical strategy
assuming that all valid inputs are equally likely?

Solution. The desired functionality is given by the following table:

x y z x ∨ y ∨ z !
= a⊕ b⊕ c

0 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1

Clearly we can achieve 75% winning probability by setting a ≡ b ≡ c ≡ 1. Now suppose that we could
do better. Then there would exist a deterministic classical winning strategy, i.e. functions a(x), b(y), c(z)
such that a(x)⊕ b(y)⊕ c(z) = x ∨ y ∨ z for all valid inputs. This leads to a contradiction:

1 =
⊕

x⊕y⊕z=0

x ∨ y ∨ z =
⊕

x⊕y⊕z=0

a(x)⊕ b(y)⊕ c(z) = 0.  

The first equality is obtained by summing the last column in the table, while the last equality follows from

observing that each of the input bits x, y and z (and hence the corresponding output) attains the same

value twice as we vary over all allowed inputs.

(b) Show that there exists a quantum winning strategy in which Alice, Bob and Charlie share
a GHZ state, |Ψ〉ABC = 1√

2
(|000〉ABC + |111〉ABC).

Solution. We consider the following strategy, which is performed by each of the players: On receiving
input 0, the player measures in the σx-eigenbasis,

|φx0,1〉 =
1√
2

(
1
±1

)
,

and outputs i if the the outcome was |φxi 〉. On receiving input 1, she measures in the σy-eigenbasis,

|φy0,1〉 =
1√
2

(
1
±i

)
,

and outputs j if the the outcome was |φyj 〉.
We now show that this strategy allows the players to win with certainty. To see this, note that at least
one of the players will receive a zero input bit. Without loss of generality, we can take this to be Alice,
i.e. x = 0. The following table displays the post-measurement reduced state on Bob and Charlie’s side
corresponding to each measurement outcome:
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a post-measurement state of Bob and Charlie

0
1√
2

(|00〉BC + |11〉BC) =
1√
2

(|φx0φx0〉BC + |φx1φx1〉BC) =
1√
2

(|φy0φ
y
1〉BC + |φy1φ

y
0〉BC)

1
1√
2

(|00〉BC − |11〉BC) =
1√
2

(|φx0φx1〉BC + |φx1φx0〉BC) =
1√
2

(|φy0φ
y
0〉BC + |φy1φ

y
1〉BC)

(This follows from the U ⊗ U∗-invariance of the triplet state.)

As is apparent from the table, the post-measurement state for a = 0 is correlated for measurements in the
σx-eigenbasis, but anti-correlated for measurements in the σy-eigenbasis. For a = 1, the opposite is true.

On the other hand, since x ⊕ y ⊕ z = 0 and x = 0 by assumption, we necessarily have that y = z = 0 or
y = z = 1. That is, both Bob and Charlie will always measure in the same basis (in the σx-eigenbasis in
the first case, the σy-eigenbasis in the second case). Therefore, we get the second-to-last column in the
following table:

x y z x ∨ y ∨ z a b⊕ c a⊕ b⊕ c
0 0 0 0 0 0 0

1 1 0

0 1 1 1 0 1 1
1 0 1

The players win the game with 100% success.

(c) Find a non-signaling winning strategy in which Alice and Bob share a PR-box.

Solution. Alice and Bob simply use the PR-box, which gives them outputs a and b satisfying a⊕ b = xy.
Charlie outputs the negation of his input, c = z. Then:

x y z x ∨ y ∨ z a⊕ b = xy c = z a⊕ b⊕ c
0 0 0 0 1 1 0
1 1 0 1 0 1 1
1 0 1 1 1 0 1
0 1 1 1 1 0 1

In fact, there exists a strategy in which Charlie always outputs a constant! This is because x⊕ y ⊕ z = 0,
so that x⊕ y ⊕ 1 = z = c. It follows that if Alice and Bob add their input x, y to the respective output of
the PR-box then Charlie may simply always output 1. Indeed:

x y z x ∨ y ∨ z a⊕ b = xy ⊕ x⊕ y c = 1 a⊕ b⊕ c
0 0 0 0 1 1 0
1 1 0 1 0 1 1
1 0 1 1 0 1 1
0 1 1 1 0 1 1

(Here, a and b denotes the output of Alice and Bob, i.e. a = a′ ⊕ x and b = b′ ⊕ y, where a′ and b′ are the

outputs of the PR-box.)

(d) Is there a quantum winning strategy in which only Alice and Bob share a quantum state?

Solution. (Sketch) Suppose that there exists such a strategy. We may assume without loss of generality

that Charlie performs a deterministic strategy, c = f(z). Then, using z = x ⊕ y, one finds that the

resulting correlations can be used to win the CHSH game with probability one (e.g., for c = z we find that

a⊕ b = xy). This is of course impossible by Tsirelson’s bound.
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Exercise 4. Mermin–Peres Magic Square Game

A magic square is a three-by-three grid with entries in ±1, such that the product of each row
is equal to +1 while the product of each column is equal to −1. The magic square game now is
the following game of two players, Alice and Bob. Alice receives the index x of a row and has
to output three numbers in ±1 which look like the row of a magic square (i.e., their product
is equal to +1). Bob receives the index y of a column and has to output three numbers in ±1
which look like the column of a magic square (i.e., their product is equal to −1). Crucially, their
output has to agree on the intersection, as in the following example:

−1 −1 1

−1

1

∏
= 1

∏
= −1

x

1

2

3

1 2 3y

(a) Show that there is no classical strategy that wins with probability one. Hint: Do magic
squares exist?

Solution. Suppose that there exists a (without loss of generality) deterministic classical strategy that is
successful with 100% probability. Then we can construct a magic square: Define mx,y as the number in
the intersection of the x-th row and the y-column as returned by Alice and Bob, respectively. But such
magic squares do not exist, for

1 = 13 =
∏
x

∏
y

mx,y =
∏
y

∏
x

mx,y = (−1)3 = −1.  (S.1)

(b) Find a quantum winning strategy. Hint: Let Alice and Bob share two entangled pairs of
qubits and consider products of Pauli operators.

Solution. We have seen above that the system of equations∏
y

mx,y = 1 (∀x)

∏
x

mx,y = −1 (∀x)
(S.2)

has no solution over {±1}. In fact, the argument above shows that it has no solution as long as the variables
mx,y commute with each other (so that we can do the same re-ordering as in (S.1)).

We are therefore lead to search for non-commutative solutions of (S.2)! That is, we would like to find
operators Mx,y that satisfy (S.2). The operators Mx,y should be Hermitian, so that we can interprete them
as observables. We shall furthermore require that the operators in each row commute with each other, and
likewise for the operators in each column (so that they can be jointly measured). Following the hint, we
find that the following products of Pauli operators does the job:

5



σx ⊗ σx

σy ⊗ σy

σz ⊗ σz

σx ⊗ 1

−σx ⊗ σz

1⊗ σz

1⊗ σx

−σz ⊗ σx

σz ⊗ 1

x

1

2

3

1 2 3y

(To see that the operators in the second row commute with each other, use that σxσy = iσz etc.)

Now the idea is that Alice, given a row index x as input, will output the result of measuring all observables
Mx,y for the row (on her part of the state), while Bob, given a column index y as input, will output the
result of measuring all observables Mx,y for the column (on his part of the state). Since the operators Mx,y

satisfy (S.2), the product of Alice’s output is +1, while the product of Bob’s output is −1.

Thus we only have to satisfy compatibility condition, which requires that Alice and Bob should get the
same measurement output on the intersection. This we will do by choosing a suitable state: Following the
hint, we consider two maximally entangled states shared between Alice and Bob:

|Ψ〉AB =
1√
2

(|00〉A1B1 + |11〉A1B1)⊗ 1√
2

(|00〉A2B2 + |11〉A2B2) .

It is then easy to check by using

1√
2

(|00〉+ |11〉) =
1√
2

(|φx0φx0〉+ |φx1φx1〉) =
1√
2

(|φy0φ
y
1〉+ |φy1φ

y
0〉) ,

where |0, 1〉 are the eigenvectors of σz and where |φx,yj 〉 denote the eigenvectors of σx and σy as in the

solution to the last exercise (with eigenvalues ±1 each), that the compatibility condition is indeed satisfied.
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