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Exercise 1. Non-quantum correlations

In this exercise we will use the semi-definite technique used in the lecture to show that the
perfect PR-box cannot be realized quantum mechanically. For this we relabel the outcome 0
with +1 and the outcome 1 with -1, as in the following table:
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Denote by P x and Qy the operators corresponding to observables on the systems (P 0 is the
observable corresponding to the choice X = 0, etc.) and consider the set {Ai} := {P 0⊗1, P 1⊗
1,1⊗Q0,1⊗Q1} as in the lecture.

(a) Fill in as much of the 4× 4 matrix M as you can. There should be 4 undefined elements.

Solution. To fill in the table, we compute the known expectation values of the different combination of
the operators. For example, 〈

P 0 ⊗Q0〉 = −1〈
(P 0)2 ⊗ 1

〉
= 1 .

The known values are then:

P 0 ⊗ 1 P 1 ⊗ 1 1⊗Q0
1⊗Q1

P 0 ⊗ 1 1 -1 -1

P 1 ⊗ 1 1 -1 1

1⊗Q0 -1 -1 1

1⊗Q1 -1 1 1

(b) By computing the eigenvalues of M , or otherwise, show that the PR-box correlations
cannot be realized quantum mechanically.

Hint. Start by showing that it is enough to consider the case where the missing elements are real

by looking on the matrix 1
2 (M +M∗)

Solution. First note that M is positive semi-definite if and only if the matrix M∗ defined by taking the
complex conjugate of its entries is positive semi-definite. This also implies that M is positive semi-definite
if the real matrix 1

2
(M + M∗) is positive semi-definite. Therefore, it is enough to consider real positive

semi-definite possible completions to M .

We can now denote the missing entries with x and y as in the following table:
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P 0 ⊗ 1 P 1 ⊗ 1 1⊗Q0
1⊗Q1

P 0 ⊗ 1 1 x -1 -1

P 1 ⊗ 1 x 1 -1 1

1⊗Q0 -1 -1 1 y

1⊗Q1 -1 1 y 1

The eigenvalues of M are:

λ1 =
1

4

(
4− 2

√
2

√
4 + x2 + y2 −

√
8x2 + x4 + 8y2 − 2x2y2 + y4

)
λ2 =

1

4

(
4 + 2

√
2

√
4 + x2 + y2 −

√
8x2 + x4 + 8y2 − 2x2y2 + y4

)
λ3 =

1

4

(
4− 2

√
2

√
4 + x2 + y2 +

√
8x2 + x4 + 8y2 − 2x2y2 + y4

)
λ4 =

1

4

(
4 + 2

√
2

√
4 + x2 + y2 +

√
8x2 + x4 + 8y2 − 2x2y2 + y4

)
and since λ3(x, y) < 0 for all x, y, we know that the PR-box correlations cannot be realized quantum
theory.

Exercise 2. Tsirelson’s bound

In this exercise we will prove Tsirelson’s bound using the dual semi-definite program (SDP).

In general, for any primal SDP we can define the dual SDP. One way of writing the primal (left)
and the dual (right) programs is as follows:

max Tr(CTX) min b · λ

s.t. Tr(A(i)TX) = bi ∀i s.t.
∑
i

λiA
(i) ≥ C

X ≥ 0

where b and λ are real vectors and C,X and A(i) are real matrices.

(a) Show that any value of the dual program sets an upper bound on the value of the primal
program.

Solution. We need to prove that for any solutions of the problems X and λ we have b · λ ≥ Tr(CTX).

b · λ =
∑
i

biλi

=
∑
i

Tr(A(i)TX)λi

= Tr

[∑
i

λiA
(i)

]T
X


≥ Tr(CTX)

In the lecture we saw that we can compute the highest violation of the CHSH inequality which
can be achieved within quantum theory using the following semi-definite program:
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max
1

2
(M13 +M31 +M14 +M41 +M23 +M32 −M24 −M42)

s.t. Mii = 1 ∀i
M ≥ 0

Remark. We use here a different notation of Bell inequalities, in which the bound is given on
the correlations of the system and not on the success probability of some game as the CHSH
game. Using this notation, the CHSH inequality reads

|〈X0 ⊗ Y0〉+ 〈X1 ⊗ Y0〉+ 〈X0 ⊗ Y1〉 − 〈X1 ⊗ Y1〉| ≤ 2 .

(b) Write the dual SDP for this problem and use it to show that the value 2
√

2 is an upper
bound on the violation that can be achieved within quantum theory. Since this violation
can also be achieved within quantum theory this implies that Tsirelson’s bound is optimal.

Solution. For simplicity, using the matrix

W =


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0


we can write the objective function as 1

2
Tr(MW ). Using the notations of the primal and dual SDPs above

C = 1
2
W and for all i ∈ {0, 1, 2, 3}, bi = 1 and the matrix A(i) is a matrix in which A(i)

ii = 1 and all other entries
are 0. Therefore, the dual SDP is:

min

3∑
i=0

λi

s.t. diag(λ) ≥ 1

2
W

where diag(λ) is a matrix with λ on its diagonal.

Consider the solution λ = 1√
2
(1, 1, 1, 1) for the dual problem. It satisfies the constraint diag(λ) ≥ 1

2
W and

therefore it is a valid solution. The value of the objective function for this solution is 2
√

2. According to (a), this

implies that 2
√

2 is an upper bound for the violation which can be achieved within quantum theory.
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