Modular invariance and orbifolds

Stefan Huber Proseminars in theoretical physics

ETH Zurich

March 18, 2013

Outline

Topics

- The modular group $SL_2(\mathbb{Z})$
 - Modular transformations
 - Generators of the modular group
 - Special functions and their modular properties
- Conformal field theory on a torus
 - The free boson and fermion
 - Variation: Compactified boson
- Orbifolds
 - The \mathbb{Z}_2 orbifold theory for compactified bosons

Modular transformations

Definition

The modular group Γ is the group of all linear fractional transformations of the upper half complex plane $\mathbb H$ of the form

$$z\mapsto \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{Z}$ and ad - bc = 1.

Modular transformations

Group properties

- Identify (a, b, c, d) transformation with $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- Identity: a = 1, b = 0, c = 0, d = 1 corresponds to 1.
- Composition corresponds to matrix product and is associative.
- Inverse to (a, b, c, d): (d, -b, -c, a) like matrix inverse.
- No difference between the transformation (a, b, c, d) and (-a, -b, -c, -d).

Modular transformations

Matrix group

- As ad bc = 1, the matrices of modular transformations have unit determinant.
- \Rightarrow $SL_2(\mathbb{Z})$, the special linear group.
- Matrices only determined up to a sign!
- $\Gamma \cong \mathsf{PSL}_2(\mathbb{Z}) = \mathsf{SL}_2(\mathbb{Z}) / \{1, -1\}.$
- "Projective special linear group". From now on, write $SL_2(\mathbb{Z})$.

Generators of the modular group

TandS

Define:

- $\mathcal{T}: \mathbb{H} \to \mathbb{H}, z \mapsto z + 1.$ $\mathcal{T} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$
- $S: \mathbb{H} \to \mathbb{H}, z \mapsto -\frac{1}{z}.$ $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

Defining properties

It is also possible to arrive at \mathcal{T} and \mathcal{S} via their defining properties:

$$(\mathcal{ST})^3 = \mathcal{S}^2 = \mathbb{1}.$$

Theta functions

Origin

- Holomorphic functions of $(z, \tau) \in \mathbb{C} \times \mathbb{H}$.
- Important for the theory of elliptic functions.
- Arise as solutions of the heat equation.
- Connected to Riemann's ζ function via an integral transformation.

Theta functions

Definition (z = 0)

Let $\tau \in \mathbb{H}$, let $q = \exp(2\pi i \tau)$.

•
$$\Theta_2(\tau) = \sum_{n \in \mathbb{Z}} q^{(n+\frac{1}{2})^2/2} = 2q^{\frac{1}{8}} \prod_{n=1}^{\infty} (1-q^n) (1+q^n)^2$$
.

•
$$\Theta_3(\tau) = \sum_{n \in \mathbb{Z}} q^{\frac{n^2}{2}} = \prod_{n=1}^{\infty} (1 - q^n) \left(1 + q^{n - \frac{1}{2}} \right)^2$$
.

•
$$\Theta_4(\tau) = \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{n^2}{2}} = \prod_{n=1}^{\infty} (1 - q^n) \left(1 - q^{n - \frac{1}{2}}\right)^2$$
.

Dedekind's η function

Definition

$$\eta(\tau) = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1 - q^n).$$

Connection to theta functions

$$\eta^3(\tau) = \frac{1}{2}\Theta_2(\tau)\Theta_3(\tau)\Theta_4(\tau).$$

Modular properties

Table of modular properties

$$\eta(\tau+1) = \exp\left(\frac{\pi i}{12}\right) \eta(\tau) \qquad \eta\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}} \eta(\tau)$$

$$\Theta_2(\tau+1) = \exp\left(\frac{\pi i}{4}\right) \Theta_2(\tau) \qquad \Theta_2\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}} \Theta_4(\tau)$$

$$\Theta_3(\tau+1) = \Theta_4(\tau) \qquad \Theta_3\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}} \Theta_3(\tau)$$

$$\Theta_4(\tau+1) = \Theta_3(\tau) \qquad \Theta_4\left(-\frac{1}{\tau}\right) = \sqrt{\frac{\tau}{i}} \Theta_2(\tau)$$

The torus

Definition

- Riemann genus: 1
- A parallelogram whose opposite edges are identified.
- The torus has two periods ω_1, ω_2 . Points which differ by integer combinations of ω_1, ω_2 are identified.
- The quantity of interest is the modular parameter $\tau = \frac{\omega_2}{\omega_1}, \tau \in \mathbb{H}$.

The torus

Modular transformations

- $\tau \in \mathbb{H} \Rightarrow \mathsf{SL}_2(\mathbb{Z})$ can act on τ .
- S: Looking at the torus from the side.
- \mathcal{T} : Cutting the torus, rotating one piece by 2π , stick back together.
- Modular transformations of τ do not change the torus.

The partition function

Establishment

- Define space and time directions along real and imaginary axes.
- Translation operator over distance a, parallel to ω_2 in space-time: $\exp\left(-\frac{a}{|\omega_2|}\left[H\ \mathrm{Im}\omega_2-iP\ \mathrm{Re}\omega_2\right]\right)$.
- Regard a as lattice spacing. Complete period contains m lattice spacings ($|\omega_2| = ma$), then $Z(\omega_1, \omega_2) = \text{Tr} \exp(-[H \text{Im}\omega_2 iP \text{Re}\omega_2])$.

The partition function

In terms of Virasoro generators

- Regard the torus as a cylinder of circumference L whose ends have been stuck together.
- Then $H=rac{2\pi}{L}\left(L_0+\overline{L}_0-rac{c}{12}
 ight)$, $P=rac{2\pi i}{L}\left(L_0-\overline{L}_0
 ight)$.
- $\Rightarrow Z(\tau) = \operatorname{Tr}\left(q^{L_0 \frac{c}{24}} \overline{q}^{\overline{L}_0 \frac{c}{24}}\right).$

The free boson on the torus

Partition function

- Remember $\chi_{(c,h)}(\tau) = \operatorname{Tr} q^{L_0 \frac{c}{24}} = \frac{q^{h + \frac{1-c}{24}}}{\eta(\tau)}$.
- $\Rightarrow Z_{bos} \propto \frac{1}{|\eta(\tau)|^2}$.
- Not modular invariant!
- $Z_{bos}(au) = \frac{1}{\sqrt{\text{Im} au}|\eta(au)|^2}$ is modular invariant.

The free boson on the torus

Detailed derivation with ζ regularization

- Path-integral formulation.
- Result is a divergent product of the form $\prod_n \left(\frac{1}{\lambda_n}\right)^{\frac{1}{2}}$.
- Define a ζ -like function $G(s) = \sum_n \frac{1}{\lambda_n^s}$.
- After analytic continuation, our product is regularized to be $\exp\left(\frac{1}{2}G'(0)\right)$.

The free fermion on the torus

Action

- Free-fermion action: $S = \frac{1}{2\pi} \int d^2x \ (\overline{\psi} \partial \overline{\psi} + \psi \overline{\partial} \psi).$
- $\psi, \overline{\psi}$ are decoupled.
- $\Rightarrow Z = Pf(\partial)Pf(\overline{\partial}) = \sqrt{\det \nabla^2}$.

The free fermion on the torus

Periodicity conditions

- $\psi(z+\omega_1)=e^{2\pi i v}\psi(z), \quad \psi(z+\omega_2)=e^{2\pi i u}\psi(z).$
- Action must be invariant when $z \mapsto z + \omega_1$ or $z \mapsto z + \omega_2$.

Possible periodicity conditions

$$(v, u) = (0, 0)$$
 (R,R)
 $(v, u) = (0, \frac{1}{2})$ (R,NS)
 $(v, u) = (\frac{1}{2}, 0)$ (NS,R)
 $(v, u) = (\frac{1}{2}, \frac{1}{2})$ (NS,NS)

R: Ramond, NS: Neveu-Schwarz.

The free fermion on the torus

Periodicity conditions

- A set (v, u) of periodicity conditions is called a spin structure.
- Decoupled ψ , $\overline{\psi}$: consider partition function obtained by integrating the holomorphic field only, $d_{v,u}$.
- $\bullet \Rightarrow Z_{v,u} = |d_{v,u}|^2.$
- When implementing the conditions, find operator anticommuting with $\psi(z)$:

$$(-1)^F$$
, $F = \sum_{k>0} F_k$, $F_k = b_{-k}b_k$.

The free fermion on the torus

Associated partition functions

$$egin{aligned} d_{0,0} &= 0, \ d_{0,rac{1}{2}} &= \sqrt{rac{\Theta_2(au)}{\eta(au)}}, \ d_{rac{1}{2},0} &= \sqrt{rac{\Theta_4(au)}{\eta(au)}}, \ d_{rac{1}{2},rac{1}{2}} &= \sqrt{rac{\Theta_3(au)}{\eta(au)}}. \end{aligned}$$

The free fermion on the torus

Modular invariance

- Check modular properties of $d_{0,\frac{1}{2}},d_{\frac{1}{2},0},d_{\frac{1}{2},\frac{1}{2}}$.
- Up to phase factors, they mix.
- ⇒ All the three possibilities (NS,R), (R,NS), (NS,NS) have to be included in the theory.

$$Z = Z_{\frac{1}{2},\frac{1}{2}} + Z_{0,\frac{1}{2}} + Z_{\frac{1}{2},0}$$

$$= \left| \frac{\Theta_2}{\eta} \right| + \left| \frac{\Theta_3}{\eta} \right| + \left| \frac{\Theta_4}{\eta} \right|$$

$$= 2\left(\left| \chi_{1,1} \right|^2 + \left| \chi_{2,1} \right|^2 + \left| \chi_{1,2} \right|^2 \right)$$

• This is twice the partition function of the Ising model.

The compactified boson

Boundary conditions

• Consider the boundary condition:

$$\varphi(z+k\omega_1+k'\omega_2)=\varphi(z)+2\pi R(km+k'm'), \quad k,k'\in\mathbb{Z}.$$

- Integration: Decompose $\varphi = \varphi^{cl}_{m,m'} + \tilde{\varphi}$.
- $Z_{m,m'}(\tau) = Z_{bos}(\tau) \exp\left[-\frac{\pi R^2 |m\tau m'|^2}{2\text{Im }\tau}\right].$

The compactified boson

Modular invariance

• S and T act on $Z_{m,m'}$ as follows:

$$Z_{m,m'}(\tau+1) = Z_{m,m'-m} \quad Z_{m,m'}\left(-\frac{1}{\tau}\right) = Z_{-m',m}.$$

- \Rightarrow Sum over all (m, m') with equal weights.
- The final partition function is

$$Z(R) = \frac{1}{|\eta(\tau)|^2} \sum_{e,m \in \mathbb{Z}} q^{\left(\frac{e}{R} + \frac{mR}{2}\right)^2/2} \overline{q}^{\left(\frac{e}{R} - \frac{mR}{2}\right)^2/2}.$$

The compactified boson

The final partition function

- Sum over all (electric) charges of vertex operators and all possible "winding numbers" (magnetic charges) of the c=1 Virasoro characters squared.
- Conformal dimensions:

$$h_{e,m} = \frac{1}{2} \left(\frac{e}{R} + \frac{mR}{2} \right)^2, \quad \overline{h}_{e,m} = \frac{1}{2} \left(\frac{e}{R} - \frac{mR}{2} \right)^2.$$

• The model has a $e \leftrightarrow m$ duality

$$Z\left(\frac{2}{R}\right)=Z(R).$$

Orbifolds

Definition

Let \mathcal{M} be a manifold with a discrete group action $\mathcal{G}: \mathcal{M} \to \mathcal{M}$. \mathcal{G} possesses a fixed point $x \in \mathcal{M}$ if for $g \in \mathcal{G}, g \neq \mathbb{1}$, we have gx = x. Then we construct the orbifold \mathcal{M}/\mathcal{G} by identifying points under the equivalence relation $x \sim gx$ for all $g \in \mathcal{G}$.

Orbifolds

Properties

- Generalization of manifolds allows discrete singular points.
- If \mathcal{G} acts freely (no fixed points) $\Rightarrow \mathcal{M}/\mathcal{G}$ is a manifold.
- Fixed points lead to singularities.

The S_1/\mathbb{Z}_2 orbifold

Example

- Take $\mathcal{M} = \mathcal{S}_1$, the circle, with $x \equiv x + 2\pi r$.
- Let $\mathcal{G}: \mathbb{Z}_2: \mathcal{S}_1 \to \mathcal{S}_1$ with the generator $g: x \mapsto -x$.
- Fixed points: x = 0, $x = \pi r$.

Figure: The S_1/\mathbb{Z}_2 orbifold.

The S_1/\mathbb{Z}_2 orbifold

Application

- In CFT: Take modular invariant theory \mathcal{T} and a discrete symmetry \mathcal{G} on its Hilbert space. Construct a "modded-out" theory \mathcal{T}/\mathcal{G} which is also modular invariant.
- Take the \mathbb{Z}_2 action on the compactified free boson.
- We have more general boundary conditions:

$$\varphi(z+k\omega_1+l\omega_2)=e^{2\pi i(kv+lu)}\varphi(z).$$

• The action is invariant under $\varphi \mapsto -\varphi \Rightarrow$ only half the path-integral range as compared to circle.

The S_1/\mathbb{Z}_2 orbifold

Application

• Calculate holomorphic partition functions like for the free fermion $(Z_{v,u} = |f_{v,u}|^2)$:

$$\begin{split} f_{0,\frac{1}{2}} &= 2\sqrt{\frac{\eta(\tau)}{\Theta_{2}(\tau)}}, \\ f_{\frac{1}{2},0} &= 2\sqrt{\frac{\eta(\tau)}{\Theta_{4}(\tau)}}, \\ f_{\frac{1}{2},\frac{1}{2}} &= 2\sqrt{\frac{\eta(\tau)}{\Theta_{3}(\tau)}}, \end{split}$$

The S_1/\mathbb{Z}_2 orbifold

The final partition function

$$Z_{orb}(R) = \frac{1}{2} \left(Z(R) + \frac{|\Theta_2 \Theta_3|}{|\eta|^2} + \frac{|\Theta_2 \Theta_4|}{|\eta|^2} + \frac{|\Theta_3 \Theta_4|}{|\eta|^2} \right).$$

Conclusion

Key points

- Prediction of partition functions from invariance considerations.
- \bullet ζ regularization of divergent sums/products.
- Modular invariance restricts the theory.
- Construction of orbifold theories.