
Superconformal String Theory

Francesca Ferrari

ETH Zürich

May 13, 2013

Francesca Ferrari (ETHZ) SUSY May 13, 2013 1 / 35



1 Introduction

2 Classical Fermionic Superstring

Action in the superconformal gauge

3 Global World-Sheet Supersymmetry

Global supersymmetry transformations

Superspace

Dirac equation and mode expansions

4 Quantization

Covariant quantization

Light-cone gauge quantization

5 Locally Supersymmetric Action

Superstring action and symmetries

6 Conclusions

Francesca Ferrari (ETHZ) SUSY May 13, 2013 2 / 35



Classical Fermionic Superstring Action in the superconformal gauge

Superconformal Action

S = − 1

2π

∫
d
2σ
{
∂αX

µ(σ)∂αXµ(σ)− i ψ̄µ(σ)ρα∂αψµ(σ)
}

ψµA ↪→ Two-component worldsheet spinor,

D-plet of Majorana fermion transforming in the

vector representation of the Lorentz group

SO(D − 1, 1).
ραAB ↪→ Two-dimensional Dirac matrix,

satisfying the Cli�ord Algebra {ρα, ρβ} = −2ηαβ .
The matrices ρα are chosen to be purely imaginary.

ρ0 =

(
0 −i
i 0

)
ρ1 =

(
0 i

i 0

)
.
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Classical Fermionic Superstring Action in the superconformal gauge

Grassmann numbers

Grassmann numbers form a non-commutative ring with Z2 grading,

Even → |χ| = 0 , Odd → |χ| = 1

The product of two Grassmann numbers is commutative unless both

factors are odd in which case it is anti-commutative

χψ = (−1)|χ||ψ|ψχ

The coordinates of the bosonic string, Xµ(σ, τ), are represented classically

as commuting variables (even G).

The spinors, ψµ(σ, τ), are represented classically as anticommuting

variables (odd G).
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Global World-Sheet Supersymmetry Global supersymmetry transformations

Supersymmetry transformations

δXµ = ε̄ψµ

δψµ = −iρα∂αXµε

ε is a constant, in�nitesimal Majorana spinor (Odd G).

Xµ ←→ ψµ

Supersymmetry transformations relates bosonic and fermionic coordinates!!

Commuting two supersymmetry transformations we get a worldsheet

translation:

[δ1, δ2]Xµ = aα∂αX
µ

[δ1, δ2]ψµ = aα∂αψ
µ

Note: the second equation holds only if ψµ is on-shell.
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Global World-Sheet Supersymmetry Global supersymmetry transformations

The invariance of S under supersymmetry transformations implies, through

the Noether Theorem, the existence of a conserved fermionic current.

Supercurrent

Jα = 1
2ρ
βραψ

µ∂βXµ

The invariance of the theory under translation on the worldsheet gives rise

to another conserved current, the Stress-Energy Tensor.

Stress-Energy Tensor

Tαβ = ∂αX
µ∂βXµ + i

4 ψ̄
µρα∂βψµ + i

4 ψ̄
µρβ∂αψµ − (trace)

Properties

Conservation ∂αT
αβ = 0

∂αJ
α = 0

Traceless Tα
α = 0

ραJα = 0
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Global World-Sheet Supersymmetry Superspace

Superspace

Supersymmetry can be made manifest through the introduction of a two

dimensional superspace. In superspace, the worldsheet coordinates, σα, are
supplemented by two anticommuting Grassmann coordinates θA.

De�nition of Super�eld

Y µ(σ, θ) = Xµ(σ) + θ̄ψµ(σ) +
1

2
θ̄θBµ(σ)

where Bµ is an auxiliary �eld. The generator of supersymmetry corresponds

to the generator of translation in superspace

QA =
∂

∂θ̄A
+ i(ραθ)A∂α
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Global World-Sheet Supersymmetry Superspace

The supercharge generates the in�nitesimal transformation of the super�eld

δY µ = [ε̄Q,Y µ] = ε̄QY µ

[δ1, δ2]Y µ = −aα∂αY µ

Supersymmetry transformations

δXµ = ε̄ψµ

δψµ = −iρα∂αXµε+ Bµε

δBµ = −i ε̄ρα∂αψµ

The closure of the supersymmetry algebra is achieved thanks to the

auxiliary �eld Bµ, whose vanishing accounts for the on-shell condition of

the fermionic �eld.
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

Equations of motion

In light-cone coordinates (σ± = τ ± σ) the fermionic part of the action

results

Sf =
i

π

∫
d
2σ
{
ψ−∂+ψ− + ψ+∂−ψ+

}
where ψ =

(
ψ−
ψ+

)
is a two component spinor.

The equations of motion as functions of the right and left moving

components are

∂+ψ
µ
− = ∂+

(
∂−X

µ
)

= 0

∂−ψ
µ
+ = ∂−

(
∂+X

µ
)

= 0
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

The conserved currents in light-cone coordinates results

J+ = ψµ+∂+Xµ

J− = ψµ−∂−Xµ
T++ = ∂+X

µ∂+Xµ + i
2ψ

µ
+∂+ψµ+

T−− = ∂−X
µ∂−Xµ + i

2ψ
µ
−∂−ψµ−

Super-Virasoro algebra

{J−(σ), J−(σ′)} = πδ(σ − σ′)T−−(σ)
{J+(σ), J+(σ′)} = πδ(σ − σ′)T++(σ)
{J+(σ), J−(σ′)} = 0

Super-Virasoro constraints

T++ = T−− = J+ = J− = 0

↪→ local supersymmetry & gauge-invariant Lagrangian
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

Boundary conditions for Closed strings

Periodicity (R)

ψµA(σ, τ) = ψµA(σ + π, τ)

Antiperiodicity (NS)

ψµA(σ, τ) = −ψµA(σ + π, τ)

The antiperiodicity condition is due to the fact that ψµA, being a spinor on

the worldsheet, can be itself or minus itself after a complete rotation

around the string.
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

The general solutions of the Dirac equation (∂+ψ
µ
− = 0) in Fourier modes

for the right-moving component are

ψµ−(σ, τ) =
∑
n∈Z

dµn e
−2in(τ−σ) (R)

or

ψµ−(σ, τ) =
∑

r∈Z+1/2

bµr e
−2ir(τ−σ) (NS)

and for the left-moving component (∂−ψ
µ
+ = 0)

ψµ+(σ, τ) =
∑
n∈Z

d̃µn e
−2in(τ+σ) (R)

or

ψµ+(σ, τ) =
∑

r∈Z+1/2

b̃µr e
−2ir(τ+σ) (NS)

Corresponding to the di�erent pairings of (ψµ−, ψ
µ
+) we obtain four

closed-string sectors: (NS-NS), (NS-R), (R-NS), (R-R).
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

Boundary conditions for Open strings

The vanishing of the surface term derived from the variation of S in

light-cone coordinates

δS =

∫
d2σδ

{
ψ−∂+ψ− + ψ+∂−ψ+

}
requires

ψ+(σ, τ) = ±ψ−(σ, τ) σ = 0, π

At one end of the string the relative sign can be chosen to be

ψµ+(0, τ) = ψµ−(0, τ), whereas at the other end the sign acquires

signi�cance and de�nes two types of sectors:

Ramond (R)

ψµ+(π, τ) = ψµ−(π, τ)

Neveu-Schwarz (NS)

ψµ+(π, τ) = −ψµ−(π, τ)
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

The general solutions of the Dirac equation in Fourier modes result,

with Ramond boundary condition,

ψµ−(σ, τ) = 1√
2

∑
n∈Z

dµn e
−in(τ−σ)

ψµ+(σ, τ) = 1√
2

∑
n∈Z

dµn e
−in(τ+σ),

with Neveu-Schwarz boundary condition,

ψµ−(σ, τ) = 1√
2

∑
r∈Z+1/2

bµr e
−ir(τ−σ)

ψµ+(σ, τ) = 1√
2

∑
r∈Z+1/2

bµr e
−ir(τ+σ).
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Global World-Sheet Supersymmetry Dirac equation and mode expansions

Superconformal modes

The Fourier modes of the conserved currents Tαβ and Jα correspond to the

super-Virasoro modes, for open strings

Lm =
1

π

∫ π

0

dσ{e imσT++ + e−imσT−−}

Fm =

√
2

π

∫ π

0

dσ{e imσJ+ + e−imσJ−}

Gr =

√
2

π

∫ π

0

dσ{e irσJ+ + e−irσJ−}

For closed string there are two sets of super-Viraroso generators, one given

by the mode expansions of T++ and J+ whereas the other given by the

mode expansions of T−− and J−.
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Quantization

Two di�erent quantization procedures

Covariant quantization : First the �elds are promoted to

operators and then, imposing the constraint equations on the

states, the negative norm states are eliminated.

Light-Cone quantization: First �nd the space of physical

states, �xing the light-cone gauge and solving the constraints,

and after quantize the system.

The two methods should agree.
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Quantization Covariant quantization

Covariant quantization

In order to quantize bosonic and fermionic coordinates in a two dimensional

free �eld theory, Xµ and ψµ are promoted to operator valued �elds obeying

the following canonical commutation relations.

[Ẋµ(σ, τ),X ν(σ′, τ, )] = −iπηµνδ(σ − σ′)
{ψµA(σ, τ), ψνB(σ′, τ)} = πηµνδABδ(σ − σ′)

These equations imply the following relations:

[αµm, α
ν
n] = mδm+nη

µν

{dµm, dνn } = δm+nη
µν

{bµr , bνs } = δr+sη
µν

where m, n ∈ Z and r , s ∈ Z + 1
2 .
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Quantization Covariant quantization

The oscillating modes become either annihilation operators, when the index

is positive

αµm |0〉 = bµr |0〉 = 0 m, r > 0

αµm |0〉 = dµm |0〉 = 0 m > 0

or creation operators, when the index is negative. For m, r < 0 αµm, d
µ
m

and b
µ
r increase the eigenvalue of M2 by 2m and 2r units, respectively.

Half integer modes → unique non degenerate ground state.

Integer modes → the ground state is not uniquely de�ned, [dµ0 ,M
2] = 0

Furthermore dµ0 form the Cli�ord algebra: {dµ0 , dν0 } = ηµν .

NS-sector −→ the states are spacetime bosons

R-sector −→ the states are spacetime fermions.
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Quantization Covariant quantization

Generators of the superconformal algebra

Fermionic sector - (R)

Lm = Lαm + Ldm

Ldm =
1

2

∑
n∈Z

(n +
1

2
m) : d−ndm+n : Fm =

∑
n∈Z

α−ndm+n

Bosonic sector - (NS)

Lm = Lαm + Lbm

Lbm =
1

2

∑
r∈Z+1/2

(r +
1

2
m) : b−rbm+r : Gr =

∑
n∈Z

α−nbr+n

where in both the two sectors

Lαm =
1

2

∑
n∈Z

: α−nαm+n :
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Quantization Covariant quantization

Quantizing the system, the algebra of the Fourier modes acquires a central

extension and becomes the super-Virasoro algebra.

[Lm, Ln] = (m − n)Lm+n + A(m)δm+n

(NS) (R)

[Lm,Gr ] =
(
1
2m − r

)
Lm+r [Lm,Fn] =

(
1
2m − n

)
Lm+n

{Gr ,Gs} = 2Lr+s + B(r)δr+s {Fm,Fn} = 2Lm+n + B(m)δm+n

Anomalies

A(m) = 1
8D(m3 −m)

B(r) = 1
2D(r2 − 1

4)

A(m) = 1
8Dm

3

B(r) = 1
2Dm

2
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Quantization Covariant quantization

In the quantum theory the physical constraints become

Ln |φ〉 = 0 n > 0 Ln |ψ〉 = 0 n > 0

(L0 − a) |φ〉 = 0 (F0) |ψ〉 = 0

Gr |φ〉 = 0 r > 0 Fn |ψ〉 = 0 n > 0

The Fock space built up by the oscillators αµm, d
µ
m and b

µ
r is not positive

de�nite. Only a subspace of the entire Fock space has this property.

Extra-physical

states of zero-norm

are found for a = 1/2, 0
in the bosonic and fermionic

sector respectively,

and critical spacetime

dimension D = 10.
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Quantization Light-cone gauge quantization

Light-cone gauge

The residual gauge freedom that arises from the symmetry of the system

under conformal transformations can be used to make the following

noncovariant choice,

X+(σ, τ) = x+ + p+τ

Figure : Every point on the

string is at the same value of

"time"

The same apply to

the fermionic coordinates, but this time thanks

to the freedom of applying local supersymmetry

transformations that preserve the gauge choices

ψ+(σ, τ) = 0

As check of consistency : δX+ = ε̄ψ+ = 0
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Quantization Light-cone gauge quantization

The super-Virasoro constraints ( T++ = T−− = J+ = J− = 0 ) in

light-cone coordinates result

ψ± · ∂±X = 0

(∂±X )2 + i
2ψ± · ∂±ψ± = 0

From these expressions X− and ψ− are �xed from the following di�erential

equations

∂X− =
1

p+
(∂X i · ∂X i + i

2ψ
i · ∂ψi )

ψ− =
2

p+
ψi · ∂X i

Leaving only the transverse oscillators X i , ψi as free coordinates.
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Quantization Light-cone gauge quantization

Having identi�ed the physical degrees of freedom as the transverse

oscillating modes, the next step consists in quantizing the system.

The canonical commutation relations for the transverse oscillators are

[αi
m, α

j
n] = mδm+nδ

ij

{d i
m, d

j
n} = δm+nδ

ij

{bir , bjs} = δr+sδ
ij

and

{x−, p+} = −i
for the center of mass light-cone coordinates.

The fundamental canonical commutation relations arise from the negative

longitudinal modes α−n , b
−
r

[p+α−m, p
+α−n ] = (m − n)p+α−m+n +

[
D − 2

8
(m3 −m) + 2am

]
δm+n

{p+b−r , p+b−s } = p+α−r+s +

[
D − 2

2
(r2 − 1

4) + 2a

]
δr+s
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Quantization Light-cone gauge quantization

The ligth-cone gauge manifestly breaks the Lorentz invariance of the

theory. The transformations that do not preserve the gauge condition (J i−

and J+−) could give rise to an anomaly term in the Lorentz algebra.

In fact, J i− has commutation relations

[J i−, J j−] 6= 0

while for the Lorentz algebra

[Jµν , Jρλ] = −iηνρJµλ + iηµρJνλ + iηνλJµρ − iηµλJνρ

it should vanish.

The quantization of the system gives rise to an anomaly term

in the Lorentz algebra.
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Quantization Light-cone gauge quantization

[J i−, J j−] = (p+)2
∞∑

m=1

∆m(αi
−mα

j
m − α

j
−mα

i
m)

where

∆m = m

(
1− D − 2

8

)
+

1

m

(
D − 2

8
− 2a

)
Thus, for general values of a and D the theory is not Lorentz invariant.

Spacetime Lorentz symmetry is recovered constraining the two parameters

D = 10 ∧ a = 1
2
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Locally Supersymmetric Action Superstring action and symmetries

Superstring Action

S = S ′ + S ′′

S ′ = − 1

2π

∫
d
2σe
{
hαβ∂αX

µ∂βXµ − i ψ̄µρα∂αψµ

}

S ′′ = − 1

π

∫
d
2σe
{
χ̄αρ

βραψµ∂βXµ + 1
4 ψ̄

µψµχ̄αρ
βραχβ

}

Invariant under the local supersymmetry transformations

δXµ = εψµ, δψµ = −iραε(∂αXµ − ψ̄µχα)

δeaα = −2i ε̄ρaχα, δχα = ∇αε
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Locally Supersymmetric Action Superstring action and symmetries

From the locally supersymmetric action, the constraint equations for the

conserved currents, Jα = 0 and Tαβ = 0, are derived as equation of

motions of the new �eld, χα, and of the world sheet metric, hαβ .

Supercurrent

Jα ≡
π

2e

δS
δχα

= 1
2ρ
βραψ

µ∂βXµ

Stress-Energy Tensor

Tαβ ≡
−2
π
√
h

δS
δhαβ

= ∂αX
µ∂βXµ + i

4 ψ̄
µρα∂βψµ + i

4 ψ̄
µρβ∂αψµ − (trace)
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The symmetries of the action can be used to impose the superconformal

gauge. This amount to set the world-sheet metric as the �at Minkowski

metric and to remove the gravitino �eld.

hαβ = ηαβ (eaα = δaα), χα = 0

In conclusion, from the locally symmetric action we can derive the

gauge-�xed action

S = − 1

2π

∫
d
2σ
{
∂αX

µ(σ)∂αXµ(σ)− i ψ̄µ(σ)ρα∂αψµ(σ)
}
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Results

• Presence of fermions

• Critical spacetime dimension D = 10

• Constant mass shift a = 1
2 .

Problem to be solved

• Presence of tachyons
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