Sheet 10

Due date: 27 May 2014

Exercise 1 [Angular momentum]: The angular momentum operator is defined by

$$\mathbf{L} = \mathbf{x} \wedge \mathbf{p}$$
,

and thus its components are

$$L_i = \varepsilon_{ijk} x_i p_k$$
.

(i) Using the fact that $[x_i, p_j] = i\hbar \delta_{ij}$, derive the commutation relations for the L_i

$$[L_i, L_j] = i\hbar \varepsilon_{ijk} L_k . (1)$$

(ii) Use (1) to show that

$$[\mathbf{L}^2, L_i] = 0$$
 for $j = 1, 2, 3$.

Let us denote by $|l,m\rangle$ the eigenstates of both L^2 and L_3 such that

$$\mathbf{L}^{2} | l, m \rangle = \hbar^{2} l(l+1) | l, m \rangle$$

$$L_{3} | l, m \rangle = \hbar m | l, m \rangle.$$

(iii) Evaluate the commutator $[L_3, L_1L_2 + L_2L_1]$, and deduce that the expectation values of L_1^2 and L_2^2 with respect to $|l, m\rangle$ are given by

$$\langle l, m|L_1^2|l, m\rangle = \langle l, m|L_2^2|l, m\rangle = \frac{1}{2}\hbar^2[l(l+1) - m^2].$$

Hint: If ψ is an eigenstate of the self-adjoint operator **A**, show that, for any operator **B**,

$$\langle \psi | [\mathbf{A}, \mathbf{B}] \psi \rangle = 0.$$

Exercise 2 [Oscillator representation of su(2)]: Let a_{\pm}^{\dagger} and a_{\pm} be two pairs of creation and annihilation operators, i. e.

$$[a_+, a_+^{\dagger}] = [a_-, a_-^{\dagger}] = 1$$
,

while all the other commutators vanish. Define

$$J_3 = \frac{1}{2} (a_+^{\dagger} a_+ - a_-^{\dagger} a_-) , \qquad J_+ = a_+^{\dagger} a_- , \qquad J_- = a_-^{\dagger} a_+ .$$

(i) Show that these operators satisfy the commutation relations of su(2),

$$[J_3, J_{\pm}] = \pm J_{\pm} , \qquad [J_+, J_-] = 2J_3 .$$

- (ii) Calculate $\mathbf{J}^2 = J_3^2 + \frac{1}{2}(J_+J_- + J_-J_+)$ and show that it equals $\frac{N}{2}(\frac{N}{2}+1)$, where $N = a_+^{\dagger}a_+ + a_-^{\dagger}a_-$ is the (total) number operator.
- (iii) Let us denote by $|n_+, n_-\rangle$ the eigenstates of the number operators $N_{\pm} = a_{\pm}^{\dagger} a_{\pm}$ with eigenvalues n_{\pm} . Show that

$$\begin{split} J_{+}|n_{+},n_{-}\rangle &= \sqrt{n_{-}(n_{+}+1)} \, |n_{+}+1,n_{-}-1\rangle \; , \\ J_{-}|n_{+},n_{-}\rangle &= \sqrt{n_{+}(n_{-}+1)} \, |n_{+}-1,n_{-}+1\rangle \; , \\ J_{3}|n_{+},n_{-}\rangle &= \frac{1}{2}(n_{+}-n_{-}) \, |n_{+},n_{-}\rangle \; . \end{split}$$

(iv) Recall that on the standard basis $|j,m\rangle$ the generators of su(2) act as

$$J_3|j,m\rangle = m|j,m\rangle,$$

 $J_{\pm}|j,m\rangle = \sqrt{j(j+1) - m(m\pm 1)}|j,m\pm 1\rangle.$

Show that the above operators take this form with

$$j = \frac{1}{2}(n_+ + n_-)$$
, and $m = \frac{1}{2}(n_+ - n_-)$.

Thus conclude that we have the identification

$$|j,m\rangle = \frac{(a_+^{\dagger})^{j+m} (a_-^{\dagger})^{j-m}}{\sqrt{(j+m)!(j-m)!}}|0,0\rangle.$$