Exercise Sheet IV

Hand in by 29.10.2008

Problem 1 [Consistency checks on the solution for X^- .]:

(a) Use

$$\dot{X}^{-} \pm X^{-'} = \frac{1}{\beta \alpha'} \frac{1}{2p^{+}} \left(\dot{X}^{I} \pm X^{I'} \right)^{2} \tag{1}$$

to find $\partial_{\tau}X^{-}$ and $\partial_{\sigma}X^{-}$. Show that the consistency condition $\partial_{\sigma}(\partial_{\tau}X^{-}) = \partial_{\tau}(\partial_{\sigma}X^{-})$ holds if the transverse coordinates X^{I} satisfy the wave equation.

- (b) Show that X^- , as calculated in (1), satisfies the wave equation if the transverse coordinates X^I satisfy the wave equation.
- (c) Assume that at the open string endpoints some of the transverse light-cone coordinates X^I satisfy Neumann boundary conditions and some satisfy Dirichlet boundary conditions. Prove that X^- , as calculated in (1), will always satisfy Neumann boundary conditions.

Problem 2 [Rotating open string in the light-cone gauge.]: Consider string motion defined by $x_0^- = x_0^I = 0$, and the vanishing of all coefficients α_n^I with the exception of

$$\alpha_1^{(2)} = \alpha_{-1}^{(2)*} = a,$$
 $\alpha_1^{(3)} = \alpha_{-1}^{(3)*} = ia.$

Here a is a dimensionless real constant. We want to construct a solution that represents an open string that is rotating in the (x^2, x^3) plane.

- (a) What is the mass (or energy) of this string?
- (b) Construct the explicit functions $X^{(2)}(\tau, \sigma)$ and $X^{(3)}(\tau, \sigma)$. What is the length of the string in terms of a and α' ?
- (c) Calculate the L_n^{\perp} modes for all n. Use your result to construct $X^-(\tau, \sigma)$. Your answer should be σ -independent!
- (d) Determine the value of p^+ using the condition that for this string $X^1(\tau, \sigma) = 0$. Find the relation between t and τ .
- (e) Confirm that in your solution the energy of the string and its angular frequency of rotation are related to its length as in the equation

$$\ell = \frac{2c}{\omega} = \frac{2}{\pi} \frac{E}{T_0}.$$