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1 Manifolds and Tensorfields

1.1 Differentiable Manifold

A differentiable Manifold is definded by the following elements:
In the overlap between any 2 charts the change of coordinates is smooth.

dim M =n

Concepts: (definded through the charts)

e differentiable function f: M — R
ie.
f(p(x)) = f(x) is differentiable as a map K — R" (algebra F(M): mult. & add.)

o F,: algebra of smooth function defined in an arbitrary small neighbourhood of p € M
f=gif f(p') =g(p') in some intersection p’ of p

e differentiable curves: v: R — M

e differentiable maps: M — M’

Tangent Space: T,atpe M
Definition: A vector X € T}, is a "derivation"& linear map
X:F—R

with a product rule
X(fg) = (X[ glp)+ f(p)(Xg)

In any chart K > p

Xf=Xfi(x) where: ,i = -2 and
X*: M — R coordinate functions

Proof: f=l=f=f Xf=X(ff)=2Xf, Xf=0
same for f = const suppose p — x =0

fl@) = f0)+ [y L f(t) dt

1
= f(0) +2' /0 fa(tz) dt

= Xf=0+(X2"g;(0) + 2" [,=0(Xg")
——

=0



In particular, in any chart:
Q. - im0
oo — fai(x) is a derivaion 5~ € T,

= X/ =z'5% f holds for any f
(%, cee agn) is a basis of T),: canonical basis

(— dim T, =n)

Directional Derivatives:

Let ~ be a curve through v(0) = p
y(t)eM
v defines X € T}, by

d
Xf:%f(ﬁ’(t)) |t=0 fer
In components:
of v - dy
Xf=——|= ' = —
f=gmar =0 = 7= e
Thus: X eT, € equiv. classes of "tangent vectors'"to curves through p.
Bases of T,
with respect to bases (eq, ..., e,): ‘
X = X’ei
Change of basis:
& = oi’en X' =¢hx"
= X=X'&= &'y’ XFe = X'e
~——

Ok since valid for every e;
:>¢Zk¢lekZXl

. _I\NT k
= ¢ =(07"),
e; = -2 canonical basis of K
ox

special case: _ i i ] _
€; = % canonical basis of K
1

change of coordinates: Tz




X = X(@) = b o g = O

< Comparison with a "phyicist"definition of vectors: set of components (X;)" )

Cotangent Space: T,” : dual linear space of T,
Def.: Covector: w € T," is a linear form
w:T,—R

X +— w(X)=(w,X)  "duality bracket"

(T," =15)
Basis (e!,...,e") of T,* & w = w;e’ with components of the covector w;

In particular: dual basis to (eq,...,e,) of T):

(¢, X)=X"'

(' 6j) = b

Let f € Fp:
df : X — df(X) :=Xf df € T,)
Components: ' '
(df)(X) = X fa(x) = fa(z)(dz")(X)
X (zt)

(df) = fa(x)(dz')
= (dz',...,daz") is a basis of T,," : (dz*, X) = X"

- is the dual basis to (%, cee ain)

- all w € T,,* are of the form

w=df for some f € T, (pointwise, not really)

change of coordinates:

dz', X) = X' =95 X' = dz' = 95ddt
< Nl Ox

ozk
<dzk,X>



Tensors on T):

P p times contravariant
tensors of type & : .
q q times covariant

T(w, X,Y) is a trilinear form on 7,,* x T,, x T,

= generalizes vectors, covectors

- tensor product
Tw,X,)Y)=Rw,X)-SY): T=R®S

- components, e.g. T of type ( ; )

T( X, Y)=T(c e, )  wXVE
~———— H/_/

\('i./’ <~

wiel  alej T ei(w)ed (X)eF(Y)

components :(ei®ej®ek)(w7x7y)

= T:Tijkei@)ej@ek
{Tensor of type ( ; > } = {lin. comb. of tensor productX ® w ® w’}
=T1T,0T," T,

change of coordinates: (éi = 0%, €= ¢i566)

Tjik =T (e, é)
= @' 01 T(e*, €5, €,)
—————

Ty

Trace of mixed tensors

Definition:
indep. of pair of dual bases:
tr T =T, Tii = ¢'00 T (¢% ep)
50"

=T°,

In particular: T=XQ®uw= Xiwjei ® €
=StrT=tr(X Qw)=Xw = (w, X)

Analogously:

i tr i
T — Sk =T i

is linear map from type ( ; ) to type ( (1) )



The tangent map
(or "differential map")
©o: M — M

induces a linear map

pu: Ty(M) — T5(M)
X — ¢, X
by either of the following definitions:
a) (p.X) f=X(foyp)

b) let v be a curve with tangent vector X at p Then ,X is the tangent vector of
Y=@oy
Equivalence (b):

- d -, d ,- _
(0 X) [ =2 L) limo= = (Fo9) (1(1) li=o= X (0 ¢)
fowpoy
Components with respect to a basis (eq,...,e,) of T},

(€1,...,€n) of T;

X = ¢, X reads X = X%e,
Xt = <éi,X> = X* <éi, ¢*€k> = (@*)ika
\‘(—/
=o'y

in particular with respect to canonical basis:

X'=X(@) = (p.X) (T) = X(T 0 ) = X'“gf;

; ox!
= (px)') = Dk

Adjoint ¢* of ¢,:

o Tt — T, pull back
w— YW
by {(p*w, X) = (0, p. X) (X €T,)
or equivalent:
(p*:dfl—>go*(df):d(f0g0) (fTEfp)
In components:
W= QW



reads . .
wpX* = @; (0 X)" = @i(p.) , X"

Mixed Tensors cannot be pushed forward /pulled back is general.
But: let ¢ be invertible in a neighbourhood of p with ¢! smooth

{dim M =dim M

det (gj,i) #0
Then ¢., ¢* are invertible and can be extended to tensors.
Definition: by example: T, T of type ( 1 )

(0.T)(@,X) = T(¢"@, 0.~ ' X)
(@ T)(w, X) = T((¢")'w, 0. X)
= ,, " are inverse of one another

Properties:
- (T ®85) = (puT) ® (..5)
- tr(pT) = @u(tr T)
eg T=XQuw-—trT = (w,X)

tr(o.T) = tr(p.) @ (p.w)
~——

(*)'w

Components: T = o, 1" reads

_. 0F" 0x°

T = ——T¢
B gpe gk P

Same expression for manifold-transformation as for coordinate-transformation!!!

1.2 Fields

Definition: A vector field on M is a linear map

X : F — F

smooth fct.
defined everywhere

on M



with product rule

X(fg)=(Xf)g+ f(Xg)

Claim: (X f)(p) depends only on fer
—

f in arbitrary small
neighbourhood of p

Proof:  To show: f = 0 in neibourhood U 3> p, then (X f)(p) =

Indeed: pick g : M — R, supp g C U, g(p) =1
—————

=fg=0
0=X(fg9)(p

)

= (X/)(p) g(p) + /() (X9)(p)
XY
= (Xf)(p) =0

Hence: for any p € M:

X1 f_ = (XNW)
€F

defines X, € T,

In any chart: X = Xi(:zc)ai with X* = Xz
Thus: a vector field can also be viewed as

- an assignment p — X, with smooth coordinates (in any chart)

- a linear differential operator of 1% order

Operators on vector fields:

X+— fX

(multiplication by f € F)
XY [X,Y] = XY - YX

(commutator, Lie-Bracket)

[X, Y] enjoys product rule, unlike XY

(XY)(fg) =X ((Yf)g+ f(Yg))
= (XY [f)g+ (Y f)(Xg)

[XaY] (fg) = ([XvY] f)g
Jacobi-Identity:

+(Xf)Yg)+ f(XYg) + fIX,Y]g

[Xv [Ya ZH + [Yv [Z7XH + [Z> [X7 YH =0



Covector Fields: (or 1-forms)

w: vector fields (M) — F
X — w(X)
with
w(fX) = fw(X) (ferF) ("f-linearity)
Fact: w(X)(p) depends only on X, € T,

Hence: for any p € M
w(X)(p) = (wp, Xp)
defines a covector w, € T),"
In any chart:
w = w;(r)dx’ with w; = (w, 25 ) € F
smooth components

Caution: not every w is of the form w = df

: _ af ow; __ 82f _ 8Wj
(otherwise w; = 55z — 55 = Fow = 5t

which is false in general!)

Tensorfields

Definition: Tensor field of type ®} is a function

R: w ,X,Y+— Rw,X,Y) eF f-linear in all arguments
N~

1—form vector
fields

Equivalently:
R:pe M — R, tensor on T,

with smooth coordinates.

Tangent map:

1-forms:
w— YW pointwise
(go*&))p = 0" We(p) " T =Ty
Let ¢ : M — M be a global diffeomorphism (¢! exists, smooth)
vectorfields:
X — 0, X

(X)) = 0sXpm1(p)

8



equivalently: B B
(0 X) f=[X(fop)]op™
Note:
0 [X, Y] = [pu X, 0.Y]
Flows and generating fields

Definition: A flow on M is

- l-parameter group of diffeomorphisms
o M — M, (t € R)

with
Pt O Ps = Ptts
(in particular g o g = @y = o identity on M = ¢, 71 = p_)

- Orbit (or integral curve) of p € M
t— wu(p) = (1)
is smooth in t

A flow ¢; determines a vector field X (the generating field)

d
sza(fo%)

ie. X, = dﬁim

t=0

= 4(0) (tangent vector to the orbit of p at p)
t=0

At any point 7(t)

: dpi(p) _ d d
V) = = = ens)| = 2oes (@) | = Ko

Ss=

Hence: v(t) sets ODE

= generating vector field determines ¢;(p) = v(¢)

1.3 The Lie derivative

Directional derivative of a function f in direction X:

NF — %f(%(p)) _ i L #e(P) — f(P) X[ = xty,

t=0 t—oo t ’

Derivation of a vector field?



componentwise X*Y%? NO!!!

= Y,, Y, elements of different tangent spaces!

= Before diff. can be taken, Y, ) has to be transported to T,.
One possibility: by means of tangent map ¢, (Lie-Transport)

Definition: The Lie derivative Lx R of a tensor field R in direction of the vector field X is

d,
LxR = E (got R) —0

. d *
ie. (LXR)p = E% Ry, (p)

t=0
= ¢,*R is a tensor over p V't
Coordinate expressions: In any chart around p € M, for small t,

o — Z(t, x) M =M = x,7 € same chart

(")

o~ X!

Kl

satisfies

Taylor-Expansion:

8

()

tr) =2 +tX'(z)+ O
+ O(t7)

2t ) =2 +tX" (2)

Hence:
aji 7 7 2
e =0 +tX' )+ O(t7)
0%z 4
p— X’L
OtoT;, k
ox’ - -
P 8 — tX" 1(2) + O(t?)
oxt . ,
57 | = 5 — tX" k() + O(t?)
0*r :
ot0T, X
N oz’

(0" Reuy);(2) = R5(2) R®!

derivative at t =0 :

0T | z=7(t,z) OxI
(LxR)',(x) = R¢@7kX’“ — R X' o+ RpX7,

component contribution of the
wise Lie-Transport

Properties of Lx:

10



a) Lx is a linear map from tensor fields to tensor fields of the same type
b) Lx(trT) =tr(LxT) any trace
¢c) Lx(T®S)=(LxT)® S+ T ® (LxS5)
d) Lyf=Xf feFM)

) LxY =[X,)Y]|=XY -YX (Y vector field on M)

><

€

Proof: (a):y/, (b):(pullback analogy)+/
(©): e (T ®S5) = (¢"T) ® (¢1"S5)
@%Mﬁz%%*gﬁz%UO%ﬂﬂ—Xf
(e): (LxY)f = (oY limo) f= 5 zi (@-tsY) [ li=o= 7 (Y(fowi)ow) li=o

=Y (L(fop_y) !t_o +5 (V) owi li=o
=Y(-Xf)+XY[=[XY]f

Alternative definition of Ly (not making use of flows):

Claim: for given X, the map Ly is uniquely determined by (a-e)
(hence agrees with the previous definition)

Proof: (d): Lx is uniquely determined on tensor fields of type ®{

(e) " 1" ®(]j
Will show: " "®?
(C) " 1" ®Z

w : 1-form, Y vector field
w)=tr(Y ®@w)
(Lxw)(Y)=tr (Y ® Lxw)=tr (Lx(Y ®w)) —tr((LxY) Quw)

——

[X,Y]

= Ly tr(Y ®w) ~w ([X,Y])
—

= X (w(Y)) —w([X,Y])

Further Properties:

- Ly is linear in X, but not f-linear: Lyx = ALx AeER Lix # fLx

LixY = [fX,Y]= fXY —~YfX = fXY — (Y/)X — fYX
=X, Y] - (Yf)X
=(fLx)Y = (Y /)X # (fLx)Y
- Lixy) = LxLy — LyLx

Meaning of [X,Y] =0

poo X (XN = T (Fo) |,

d
b oY (Yo)(a) = (gov) |
11



Theorem: [X,Y] =0 ¢, 015 =150 ¢y

Proof: 7 &7 fow)os = (fors) oy
"'|t=0 XfowszX(fO%)
YXf=XYf

Slagl~

oo

2 Affine Connections

2.1 Parallel Transport and covariant derivaties

Definition: Any curve v in M is equipped with a parallel transport

7—<t7 S) : ?(s) - 7;}(15)
s) — X (1
(s) J (t)
chart: X(t)=771 (t,5) X * (s)
Satistying
- linear with 7(t,s)7(t,7) 7(t,t) =1
- in any chart:
Christoffel-Symbols of transport 7

STt s)|,_y = =Tl (7()) 4 (s)
SN

convention

— linear in &'
Remarks:
1. Lie-Transport ¢y, along an orbit of the vector field has

(o) = 05 + Y7 ; 4+ O(?)
0 i i
E(%*) j‘t:O =Y

does not depend on 4/(0) = Y!(x) only
Hence not of the form

2. Parallel transported vector
X(t) =7(t,5)X(s)
satisfies (in any chart) the ODE

12



B X(t) + T (1) 3 () X* (1) = 0

Note: the X are not the components of a vector, nor are the I'?;;, those of a tensor
field

3. Linearity of @ with respect to 4! implies:

7(t, s) is independent of parametrization of v (but does depend on ~,
i.e. not just on endpoints y(t),v(s))
More precisely: reparametrization r : £ — ¢ (monotonic)
gl (E) =(t) |t:r(f)
Claim: 7 (tN §)=7(t,s) ie.
if X (8) = X(s) and X(t) =7(t,5)X(s)

then X (f) = X (¢
dﬁf =T (7 (1)) i X" (?) is ODE satisfied by X*(¢)
il NP
it a3l at
dt dt

= same starting point X (s), same ODE
= solutions of this ODE are the same

T(t,s)7(s,t) =71(t, t) =1
Tt 8) TR (s, 1) = &),

o . , :
o leme e k(8] L0% — 8%y (v(8) A () = 0

= Dt 9)] = Ty () )

5. Change of chart x < z:

_; oz’
Tk(tas):T ( )8567’} t)&xk’

0z’ 0z* 01" 0%t 5

o .
5t 8)] L =T

+
ds ~—~ OxP OTF g dar Dzroz |
o
=T
Hence: SN
_ . q
o, 97 ' 0" Ox
dap 0T OTF
Conversely: any arbitrary I'”,,(x) transforming as upon change of coordinates

defines a parallel transport.

13



Parallel Transport of Tensors:

should satisfy:
7(t,s)(T®S)="1(t,s)T ®@7(t,s)S

T(t,s) (trT) =tr7(t,s)T any trace
T(t,s)c=c ceR

This extends the transport from vectors to tensors in a unique way:
Hence

- for a covector w € T(5)" recall tr (w ® X) = (w, X) apply 7(t, s):

<T(t $)w, T(t, )X >y = (w, X))

<T(t, S)w, )~(> = <w, (s, t)f(>

Compute: . ‘ 3 ' '
(7(t, $)w) X* = w; Tk (5, ) X* — 7' (t, 8) = 77k(s,1)

=714 (t,8)w;
- for a tensor of type ®1: ' _
(T(ta S)T)Zk = TZaTk/BTOCB
Covariant Derivative corresponding to 7

X vector field, R tensor field

d
(VxR)p = %T(O,t)Rw(t)

t=0

for any curve (t) with (0) = p and ¥(0) = X,

Properties:

a) maps tensor field to tensor field of same type

b) Vaf = X7 ((Vxh), = £70,0/(0)],_, = 4(0)f = X,/ = (X))
C) VX (tT T) =1tr (VXT)

d) Vx(T®S)=(VxT)® S+T® (VxS)

Definition: If the covariant derivative Vx acts on vector fields Y, we call it an
affine connection VyY.

Properties of VxY:

(i) VxY is a vector field, linear in XY
(i) VxY is f-linear: VyxY = fVyY (unlike L)
(i) Vx(fY) = fVxY + XfY

14



Proof: (ii) in any chart:
Y (t)= 2" + tX(x) + O(t?)
(VXY)i = %7’%(0, HY* (2t +t XY 2) + - a2+ X))
— (Sikyk’le + Filkxlyk

t=0

ie.
(VxY) = (Y, + T Y*) X!
(VxY), depends only on X at p ==

T, =500 (Ve |, = 47 6O) 0.0,
P
= f(p) (VxY), + (X )Y,

Conversely: Any action VY (i.e. satisfying (i-iv)) defines a parallel transport (bijective)
with respect to the canonical basis:
= Xleei + YleVelek
(VxY)'= XY+ YEX! (e, V. en)
= (Vi + (€', Vo) YF) X

= same as with Ty, = (€', Vex)

t=0

Bijective relation 7« V
Let () = Xy Then Y(s) =Y (y(s))
Y(t)=7(t,s)Y(s) <& VxY =0
note (VxY)' = (Yi, + T Y*) 4 = Y7 4 T, Yk

The covariant derivative V: (not V)

Definition: by example: T of type ®{:  i.e. T(w,Y) f-linear in w : 1-form
Y : vector field
then (VxT) (w,Y) =: (VT) (w,Y, X) defines a tensor field of type ®3

Components: ’ '
(VT) =T

with respect to canonical basis:

-for vector field Y:

Vi = (VY)') = (VY)(€,ex) = (VoY) (€)
= (V. Y) =Y, +T,Y!

-for 1-form w:

wir = (Vw)y = (Vw)(es, ex) = (Ve,w) (e:)
=epw(e;) —w (Ve,€;)

——

= wip — D

-Tensor field of type ®1:

Tt =T+ DT — T, T

15



Remark:

- T%; 1 depends only on T";(z) for given i, (in a neighbourhood of x)
- T,k depends on all components T°3(x)

2.2 Torsion and Curvature

Let V be an affine connection on M, X,Y, Z vector fields

Definition:
T(X,)Y)=VxY —-VyX — [X,Y]

R(X,Y)=VxVy = VyVx — Vixy
o At first:

— T(X,Y) is a vector field

— R(X,Y) is a linear map from tensor fields to tensor fields of the same type

T(X,Y)=-T(Y,X) .
R(X,Y) = —R(Y, X) antisymmetry
e T(X,Y) is f-linear in XY

Hence ‘ .
(0, X,Y) — (w0, T(X,Y)) = T jw, X Y*

is a tensor field of type ®3
proof:  (of f-linearity)

XY= (XY = Y(FX) =fXY][-( )X
(VHX+FX)

hence

T(fX,)Y)=fVxY — fVy X - (YHX -F[X,)Y]+ Y H)X = fT(X,Y)

e R(X,Y)Z (a vector field) is f-linear in XY, Z

Hence ' .
(W, Z,X,Y) — (w,R(X,Y)Z) = R'jpw; Z? X*Y*

defines a tensor field R of type ®3

(curvature or Riemann tensor)

proof:  (of f-linearity)

R(fX,Y) = fVxVy = VyfVx = fVixy1+ (Y f)Vx
= fVxVy = fVyVx = (Yf)Vx — fVixy + (Y [)Vx
= fR<X7 Y)

f-linearity in Z: see next proposition, part (d).

16



Proposition:
a) R(X,Y)f =0
b) RIX,Y)S®T)=(R(X,Y)S)®T+S® (R(X,Y)T)
¢) tr RX,Y)T = R(X,Y)tr T (any trace not contracting X or Y)
d) (W, R(X,Y)Z) = —(R(X,Y)w, Z)
Proof:

a) RIX,Y)f=XYf—-YXf—[X,Y]f=0
b)

RX,Y)(S®T)=Vx(VyS)@T+5® (VyT)) = Vy ((VxS) @ T+ 5® (VxT))
mixed terms drop out
— (Vixy8) ® T = S @ (VixyT)
= =(RX,Y)S)®T+S® (R(X,Y)T)

¢) follows from Vxtr T =tr VxT
d) From a)-c) we have

0=R(X,Y) (W, Z) = R(X,Y)tr (w® Z) = tr R(X,Y)(w Z)
=tr (R(X,)Y)w)® Z) +tr (w® R(X,Y)Z)
= (R(X,Y)w, Z) + (w, R(X,Y)Z)
Components with respect to coordinate basis: e = %, et = dat
= [€i> 6]'] =0

o TF; =T(c" e;,ej) = (¥, T(e;,¢5)) = (e, V5 — Ve,ep) =TFy; — T,

In particular:

Ry = <ei,R(ek,el)ej> = <6i, (Ve Ve, — Ve, Ve,) ej>
= (€', Ve, (T%565) — Ve, (Tpes))
=4k <€i, €s> + %50 s — Doy <€i, €s> — T,
=T — Dja 4+ D550 e — T80T

17



Bianchi Identities (in the special case of torsion= 0)
1. RIX,Y)Z+ R(Y,2)X + R(Z,X)Y =0
2. (VxR)(Y,Z)+ (VyR) (Z,X)+ (VzR)(X,Y) =0

Proof: Let X; = X, Xy =Y, X5 = Z. Then
3 3
Z R(Xl’ Xi+1)Xi+2 = Z(inVX¢+1Xi+2 - VX¢+1 inXiJrQ - V[Xi7Xi+1}Xi+2)
i=1 i=1

z'_>%+2 i—»%—i—l

seperate in 3 sums and replace

3
= ;(VXHQVX@'XZ'-H - in+2VXi+1X' _V[XmXHﬂXH-Q)

7
J/

~
Vx40 [XiXig1]

since VX,L-Xi+1_VXZ-+1Xi

:T(Xi, Xi-l—l) +[ X, Xi41]
~———

=0, by assumption

3 3
= > T (Xiyo, [Xi, Xig1]) + D0 [Xigo, [Xi, Xipa]] = 0
=1

i=1
by the Jacobi-Identity.
Geometric meaning of the curvature
Let X,Y be vector fields, ¢, 15 the corresponding flows, and assume [X,Y] =0
R(X,Y)=VxVy — VyVx
Proths =15 0

Consider
Tx(t) . Tp — T<Pt(1’)
parallel transport along the orbit ¢;(p) of X
v (s) : Tp — Ty, )
parallel transport along the orbit 14(p) of Y

Transport Z around the loop:
Z(t, S) = Ty(—S)Tx(—t>Ty(S)Tx<t)Z

Expand this in Taylor-Series with respect to ¢ and s:

Z(0,0) = Z
Z(t,0)=2 Z(0,s) =27
2
A
Z(t,s) =272+ gt@s t:s:(]ts + higher order

Remember that we have L7y (t)Z |;_o= —VxZ
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hence

07
E —0 = Ty(—S)vXTy(S)Z — Vx(Z>
0*7
5ol = (VyVx = VxVy)Z = —R(X.Y)Z

Thus:
Z(t,s) =Z —ts- R(X,Y)Z + higher order

Curvature measures the difference of a vector before and after having circulated around
the loop.
3 Pseudo-Riemannian manifolds

Let M be equipped with a pseudo-Riemannian metric: a symmetric, non-degenerate tensor
field of type ®9,

9(X,Y) = (X,Y)
non-degenerate: Vp e M : f X € T,,, g,(X,Y) =0VY €T,
= X, =0
in components: A
9(X,Y) = g X'Y*
(non-degenerate < det(g) # 0)

Gik = gri det(gix) # 0

Remark:

Riemannian metric: instead of non-degeneracy only requires the stronger: g,(X,X) >
0VX €T, g,(X,X) =0« X =0 (not assumed here)

By means of a metric, identify vector fields and 1-forms:

g: X —gX=X

vector
field

1-form

through

(9X,Y) :=g(X)Y)
In components:
XY= g XFY'
WY = gipoY’

w g lw=0
T
1-form  vector
field

(w,Y)=g (g_lw,Y)

~ X, = ¢ X* "lowering the index"

7 ik

w' = g"wy

"raising the index"
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Remark: Let (e1,...,e,), (e',...,e") be dual basis of T), T,*. Then

By ey
¢ =g e el

(éjaX):<€jaX>:Xj e = éj
(9567, X) = g X7 = (e, X) f 90

Note: If g;; = d;;, then e; = é’; only if ¢ is positive definite.
From now on: drop the ~:

X" contravariant

. components of the same vector
X, covariant

Similary: identify tensors of type®?, ®Z: forp+qg=p +¢":

for example:
T = g"Ti, = guT"
(consistency of (g““): raise indices of g;:
99" g = "%y, = gV
hence is consistent)

A particular connection is distinguished by the metric:
Theorem: (Riemann or Levi-Civita connection)

There is precisely one affine connection V with:

1. Torsion T'=0 Theorem is only as good as its assumptions,
they have to be justified physically, ultima-
2. Vg=20 tely by from the equivalence principle

("V is symmetric and metric")
In fact it is given as

2(VxY, Z)=X(Y,2)+Y (Z, X)-Z(X,Y)— (X, [Y, Z)+ (Y, [Z, X])+ (Z,[X,Y])
proof:

e uniqueness: Show that ((1),(2)) =
Let X1, X5, X3 be vector fields. By (2)

0= (Vg) (Xi, Xiy1, Xip2) = (VXi+2.g) (Xs, Xiv1) (),
= X2 9(Xi, Xis1) — 9 (Vx,Xi, Xit1) — 9 (Vx, 0 Xig1, X5) IV
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Take (#)iy1 + (#)iv2 — (F#)::

0= Xi9(Xit1, Xir2) + Xit19(Xit2, Xi) — Xiag(Xi, Xita)
— 9 (Vx,. X1 + Vi, Xiy Xigo)
- g (in_H i+2 — VXHQ i+1, Xi)
+9 (in+2Xi + Vix, Xiyo, X’H—l)

= what we want

e existence: defines VxY (because (-,-) is non-degenerate)
show
a) VxY is a connection

b) T=0
¢) Vg=10

b) 2(VxY = Vv X,Z)=2(X,Y],2)
= [X,)Y]=VxY -VyX

c) Vg=0% (#);

Definition of V < (& (#)iv1 + (#)ize — (#))
Take + S (#irve + (#)i — (FH)ivr + (#)i + (F)iv1 —
(#)i+2 = 2(#)
In a chart: Christoffel symbols of the Riemann connection
1
Iy = 59 Nguje + Grji — Ging)

because Iy, = (€', Vo er) = (€', Ve, er)
2, Y

Let X = ¢, = = ek, Z:ej:gijei
7

O
2(Veer, 9ii€") = grji + itk — Gik.;

3.1 Geodesic

Definition: a parametrized curve z(\) on M is a geodesic if it solves the variational principle

(2)
5/ d\(i, &) = 0, i
(1)

with fixed endpoints (both in M 3> z,R 3 )

In a chart these are the Euler-Lagrange-Equations for the Lagrangian

. 1, . 1 i
L(z,t) = i(x,x) = §gik(a:)x "
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They are

doc oL d 1

= —— — — = R
0= d\NOii  Oxd  d)\ (glj(x):c) 5 JikGT
1

Lk

x

= gyri" it 4+ g3t — 591k,j$' T
. 1 ( ) _'_ ) ) . k . l + ) ..l o 1 ) . l . k
= 5 glj,k gk],l xr'xT gl].T 2glk’1x A

g1 1.
= gljl"l + 5 (Gujk + Grjg + Gaik,j) il

— i+ "ili® =0 geodesic equation < VX =0

Recall: X(t) € T, is parallel transported along y(s) = z(s) if
X4 Tt X* = 0
says that © = X is transported in its own direction.

Remarks:

1. L =1(& &) = L(z,4) does not depend on A. Hence

pX' —L=2L—-L=1
N~~~

-q OL
Tt ==
Erd

is conserved along a geodesic

2. Reparametrization: \ — )\
o gdN e (dN 2 rd2)
& =o' i =" () + 'R
Equation X is invariant under reparametrization if
N
d\?

=0 N=a\+b (a,b € R constants)

= Only linear inhomogenous reparametrizations are admissible.

Such a reparametrization is called affine parameter

3. Assume g is positive definite.
Length of curve

(2) s (2)
/ X (i, )" :/ d\f(L) f=
) (1)

is invariant under arbitrary reparametrizations.

Along a geodesic:

(2) (2)
5 [ A (L) :/ A\ f(L)SL
(1) (1)
(2)
= f'(const) 5/ d\L
(1)
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— geodesic makes length stationary.
f((f)) dA(&, ) is applicable even if ¢ is not positive definite.
Properties of the Riemann connection:

a) inner product of vectors is conserved under parallel transport:
(X<t)7 Y(t))'y(t) = (X> Y)“f(o)
X(t)=7(t,00X
where Y(t) _ T(t, O)Y S Tv(t) X, Y € TW(O)
because of Vg =0, g, = 7(t,0)940)

(X<t)7 Y(t))»y(t) = (T(ta O)QW(O)) (T(t7 O)X’ 7_<t7 O)Y)

cf. Remark (1)
= G~(0) (X,Y) = (X, Y)“/(O)

b) covariant differentiation commutes with raising & lowering indices
T = (gkam);l = g™y
because g,y =0  For short:
Vog=goV
where ¢ is the "lowering the index"

¢) Curvature tensor: symmetries:

) (W,R(X,Y)Z) = — (Z,R(X,Y)W)
i) (W,R(X,Y)Z) = (X,R(W, Z)Y)
Proof: (W,R(X,Y)Z)=—(R(X,Y)W, Z)
Set w = gW
(w, R(X,Y)Z) = —=(R(X,Y)gW, Z) = — (R(X, Y)W, Z)
ii) says (W R(X,Y)Z) is symmetric (X,Y) < (W, 2)
(W,R(X,Y)Z) = — (W, R(Y, Z)X) — (W, R(Z, X)Y)
= (Z,R(Y,W)X) + (Z, R(W, X)Y)
2(W,R(X,Y)Z) = (W,R(Z,Y)X) + (W, R(X, Z)Y) + (Z, R(Y, W) X)
+ (Z, R(W,X)Y)
using ()

Summary:
Rijkl = —Riﬂk always
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> Ruu=0

cyclic permut.

of (jkt) torsion vanishes
i
E R jkim =0
(klm)
Riji = —Rjim | . :
Riemann connections
Rijii = Ry

note: Rijkl = <€ia R(ex, el)€j>

—(@,...)

Rijkl = (eia R(ek, el)ej)

d) Ricci and Einstein tensors

Definition: Riy,= R/; 1 (Ricci tensor)
R = RY; (scalar curvature)
Gir= Rir — %Rgik (Einstein tensor)

We have (V: Riemann connection):

- Ry, = Ry
- Rik;k = %R;i contracted 2% Bianchi
-G =0

Remark: other contractions do not produce new stuff
R'jj = —R'ji, = —Rji
Ry =—R'wi — Ry = By — R =0
Proof: R, = glelijk = glejkli = leli = Ry,
glllj
-20d Bianchi : Rijkl;m + Rijlm;k + Rijmk;l =0
trace(ik): R’ ji,m + R imi —R jmy =0
——

9% Rigjimsi

Normal coordinates

Recall from linear algebra:
A symmetric non-degenerate bilinear form g, (— metric at one point p € M)
can be put in normal form:

Tim = &' O Gire = i = diag(£1, ..., ill (& =o"em)

Vv
signarure of g;x
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Pseudo-Riemann manifold, connected

gp: metricat pe M — signatulfe of g, is consta}cnt
Change of coordinates: ¢;" = %: Jim = %gjimgik

However, as a rule: in no chart:
Gim (Z) = M,

Theorem: In some neighbourhood of any point p € M there is a chart such that
i) =0 at p
i) gi;(0) = ;5 ‘
iii) g;5,(0) =0 (& I';u(0) = 0)
Remarks:

1) H:>H:

"0 = Jikit = ikt gk — I ik Gir
Vg=0

2) Gijum(0) =0 impossible (as a rule) because R’ # 0

3) Tikl == Fikl — Filk but T'=10

4 Time, space and relativity

1. The classical relativity principle

clocks

.. } determine the frames of reference in classical physics
rigid rods

simultaneity is absolute

geometry is Euclidean } prior geometry
- free particle (i.e. far away from anything else) are at basics of dynamics

- (1 law) Inertial frames: trajectory x(t) of a free particle obeys Z = 0

- (2" law) Forces: deviation from free motion

mT; = Fi(Z1,...,ZN) m; . inertial masses i =1,..., N

Examples:

(a) Particle in electromagnetic field E:

F=¢E
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(b) Particle in gravitational field g
F =mg (m : gravitational mass)

Fact:
m = m, hence
thi' = 1hg
= All free falling particles fall with 7 = §

Remark: Inertial forces proportional to inertial mass  (Scheinkrifte)
(dissapear when moving
to inertial frame)

2. The Einstein equivalence principle (EP)

Put free falling particles at the basis of dynamics

= Qravitational force is an inertial force

EP (1911) "All freely falling, non-rotating local reference frames are equivalent w.r.t.
all local experiments"

Remarks: 1) non-rotating means no Coreolis-Force
2) EP is heuristic, to be made precise
3) valid for all of physics, not just mechanics

Application: gravitational red-shift

3. The postulates of GR (1915) (extended and clarify EP)
(a) Time and Space are a 4-dimensional pseudo-Riemannian Manifold M with me-
tric g of signature (+1,—1,—1,—1)
(p € M < events)
(chart < reference frame)
g expresses measurements done by means of ideal clocks & rods

(b) Physical quantities/laws are tensors/equations among tensors

(c) With the exception of g, physical laws only contain quantities already present
in SR.

(d) In a LIF around p € M physical laws are the same as in SR.

normal coordinates

Remarks: about (a): ideal clock: world line z(\) measures At
*(AT)? = g(&, &) (AN)?
ideal rod: world line of endpoints of rod

g(&,Az) =0
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measures length Al: (Al)? = —g(Ax, Az)
in particular coordinates:

r= (20 ..., %) such that
world line of clock x = (ct,0,0,0)
i = (c,0,0,0)

about (b): physical quantities in a reference frame are given as
components of tensors
- different in each frame
- laws including them are the same in all frames
(general form covariance)
about (d): & EP

4. Transition SR — GR

(a) laws of inertia

SR GR
it =0 Pt Th, i =0 XX
(#,4) = Gudti? = (i, i) =

free particle
" (1) world line

—d . ;
= I T: proper time

XX describes gravitational force as

it = —I'p, 2" — I'*,,(not g, describes gravitational field)
!
can be cannot
transformed
away

(b) light rays

SR GR
=0 at +TH,av2% =0
(#,2) =0 (,2) =0  (null geodesic!)

includes deflection of light
More generally: Covariant formulation of Maxwell’s equations (ME)

e.m. field tensor F),, = —F,,
In an inertial frame in the sense of SR
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0 By Ey Es

- 0 —Bs By
Fou = 0 -B
0
- homogeneous ME
SR GR
Fe+cycl. =0 F.o+cycl. =0
Sorivaiive
- inhom. ME
SR GR
Fr = %j'/ ., = %]‘V

Recipe: replace 1% order partial derivatives by covariant derivatives
Consequence of ME: charge conservation, i.e. continuity equation

SR GR

Better: rederive from ME in GR
1.v 1724 uv 1 TV v /171
I = =+ R FTY + R F
N~ ~—~—

Ry RT;/,
)

vr

= - FV'LL;I/,u + (RTI/ + RZ/T) Fm™
—_———  — O,_/
=—Fwv,, =

—0
Homogeneous ME in SR/GR:
Fo=4,,—-—A4,,=A4,,—A,, AF : 4-vector potential
(c) Equations of motion of charged particle in an e.m. field
x!(T) : trajectory T : proper time

(Vo) = & + DF,0i" 57 = S ()i,

come from a variational principle:

(2)
5/ dr (02 + i(32:, A)) =0 Fixed endpoints in space time, 7 not fixed
(1) mc
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5. Geodesic equation — Newtonian free fall

Newton’s equations of motion emerges as an approximamion for:

- slow particles

- in coordinates representing times & lengths in a small neighbourhood of ¥ =0

G (T) =My for z = (ct,0,0,0)

8

Trajection within a region space time:

v - v + h v\ T 1 1

G (T) = 1 o (2) "weak gravitational field”
|huw| <<'1
Hence hy,0 =0 at 7 =0

¢ = (,2) = nuii” + O(h)

—@ - () om  atn) = )

=44 up to O(v?) + O(h)
— zt = (67 17)

-,

- At first, particle (almost) at rest O(v) =0:3* = (c,0)

= AT i=1,2,3

with .
[ = §T]ik(h0k,0 + horo — hook)
= —hoipo + 1hUOz‘
0 7 5o,
= %hOO,i
Hence

. = 1
T = —VQO with Y = §Czh00

goo = 1+ ¢ : Newton’s gravitational potential
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- Keep terms o ¥. Then
i = —c* Ty — 2!

Because +1";oi7: T' is symmetric in lower indices
with )
Mo = 5772k(h0k,j + hiko = hojr)
1 -
= 5 ((hoji = hoij) at ' =0
Since T = ¥t keep terms oc & in g

For comparison: Newtonian description

—

r=gq— a — WAL —BABAT) -DNAT

Fiihrungsbeschl.  coriolis force centrifugal force

—~
~—

 ( ) agree for
2 — A 2
goozl‘i‘g(@_(“}/\x) ) =1+ hoo
1
goi = hoi = == (WA T), =
c
Indeed :
QCFloj = C(hojﬂ; — hOi,j) = 2Ejikwk
QCFiOJ‘j}j = 2((4_} AN ZZ")Z
GAN(BANT) =—
C2h0i70 = —((D A .f)z
6. Physical meaning of curvature

We feel gravitational force from earth, but not from sun of moon, since we’re in free
fall w.r.t. them. But the EP is not true when "going global", for example we have
tides, the moon doesn’t act the same an the two sides of the earth.

The physical meaning of curvature is that of a relative acceleration of nearby freely
falling particles.

First consider Newtionan mechanics/SR: free particles in an inertial frame

Pi
d?

Now consider GR:

family of geodesics
x(7)with 4-velocity u(z) : & = u (z(7))
V,u=20
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x are orbits of vector field u parametrized by proper time 7
o, low generated by u
We want to understand the relative displacement, starting form nearby
particles at points p, ¢ in {7 = 0}
{r=0}3p.q— ¢:(p),p-(a)
{T=0} 27— proy

vector field n in {7 =0} ,n = Z_Z

Np —— Prallp =1 Ny (p) (Lie transport)
Now from the definition of the Lie derivative:

0= Lyn :=[u,n]
\(Lu,p)fi:% (WT*TLwT(p))|T:0
i.e. v and n commute.

Hence, by torsion = 0:

V.n = V,u
——

relative
velocity
but we’re interested in the relative acceleration, therefore we compute

Vin =V, Vau = [R(u,u) +V, V, |u
~—
Vuu=0
= R(u,u)u

Thus the relative acceleration of nearby particles is given by
V2n = R(u,u)u equation of geodesic deviation

Curvature manifests itself through relative acceleration of nearby freely falling par-
ticles (tidal forces)

Remarks:
(a) Suppose u is perpendicular to {7 = 0}, i.e.
g(u,n) =0
Then this holds everywhere, because

ulg(u,n)] = Vulg(u,n)] = (Vug)(u,n) +9( Yuu ,n) + 9w, Vun)

~—~ ~—~
=0, =0, =Va,u
Vg=0 geodesic
= 3nlg(u,u)] =0
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(b) Let e, be a basis of vector fields with ey = u
Then

(€', V2¢;) : relative acceleration in direction 7 = (1,2, 3) of particles
in direction i

From the equation of geod. dev.

3 3 =

Z(ei, Vie) = Z(ei, R(u,e;)u) = (e", R(u,e,)u) = — Ric(u, u)

i=1 =1

This is the end of a chapter on gravitation in an external gravitational field.
The next chapter is even more important, namely deals with gravitational field itself.

5 The Einstein field equations

5.1 The energy-momentum tensor

SR: Energy-momentum vector p* of a particle:

m: (rest) mass

P = (EJ;*) — L(c, 7) E: energy
¢ _ p: momentum

We want to generalize this to a field. The basic thing is that a particle is somewhere, but
a field is everywhere.

Field: Energy-momentum tensor T

T%: energy density

TOk: % energy current density (in direction k)
T: cmomentum density (i component)
T%*: momentum current density

ith component k! direction

That is:

Tood3z:  energy in d®z
Tid?z: cmomentum in d3x

S T%doy, Lenergy flow

‘ ' f ide 1 to side 2
Si_, T*doy, : momentum flow } rom side 1 to side

- Symmetry: TH = T"*
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- Isotropy: If, in some frame, TH is

invariant under rotations A =

, R € SO(3), then

, pc*: energy density, p: pressure

- Energy-momentum conservation (for a free field)
™, =0
-4 / 2T =0
0=t

3 A d 0 73, —
total 4-momentum (analog in ED'jf; =0= G JooJ d°z =0)

In GR: freely falling field
T =0

Models:
1. e.m. field TH = Fr T — 2 (Fpe F7P) g
trace: T*, =0 gl =0, =4

EAB

1
THY — 2

— — 1 — —
EANB ‘§(E2 + B0y, — E;E), — B; By,

If on average TH is isotropic

1
T“M:pCQ_Bp:() et ngpCZ
lbeca'use t%f equation of state
owering the
indices

Further models of matter (particles, in a continuum description):

2. Dust ("cold dark matter"): Swarm of particles with a common local velocity
p(x): mass density in a local rest frame (LIF)

(a scalar, p(Z) = p(x), by definition)
ut(x)4-velocity
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In a local rest frame

pc? 0

T = ut = (L) *
0 0 0

In general
T = putu”

because:

- both sides are tensors
- in rest frame: agrees with =
Similary: current density j# = pu*

equations of motion:

- particle conservation:

SR: j* ,=0

GR: j*. , = (pu"),, =0 continuity equation
- free fall

V.u=0 (1) = u(z(7))
Vj;i’ =0= Vuu

This implies

14
T, =0
Indeed:
v v v
T, =t (pu”), +p uuy,
N—— —
=0, (Vuu)k=0
continuity free fall
relation

= T"" is divergence free

Conversely: T+ and u*u, = ¢* implies equations of motion since

0 =u, T, = " (pu”), + pu”  wu’y,
—— ——
—=c2 (Uuuu);yiﬂ

——

2

1
2
=c

= (pu”), =0 = V,u=0
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3. Ideal fluid: Swarm of particles with mean local velocity; velocity distribution is iso-
tropic in rest frame of distribution (where mean vel.= 0)

p(x)c? : energy density
p(z) : pressure

u" : mean local 4-vector

in a local rest frame.

Classical (Newtonian) equations of motion:

%+ +(p) = 0 Erler's ecati
S - uler’s equations
p <(%) + (U V)v) =-Vp

pc’|
TH — p
010
0

T = (p +

p v v

In a local rest frame:

$ok

oz o|lo

p

In general:

- tensors
- reduces to *x in a local rest frame

Equations of motion: Starting point 7", = 0

P (B, + (£ )

=0

Hence:

u, ", = s ((p + %) u”)w — %u” =0

Uyl , D Uyl
(gcru - 02#) ™" v <p + E) (Vuu)a — DPio + C—Qp;u =0

Classical limit (|7] < ¢, i.e. u* = (¢, 7))

in free fall (I'*g, = 0)



5.2

differs from the Euler equation, because: fluid may have particles with relativistic
velocity despite |7] < ¢

reduces to Euler for small particles: p < pc?

For several fields: total energy-momentum tensor T,

T, =0
The field equations of Gravitation FE; Einstein 1915
gravitational
constant
I S
Einstein-Tensor tota%
en.mom. tensor
Gltu: R?u _% IH% Guv
Ricci- '
Tensor

. "Matter tells how space-time curves": partial differential equations for g,

. 27 Bianchi identity G*,, = 0

implies
™., =0: This is a necessary condition for the field
equation to have solutions

(integrability condition)

(Cf F#V;M == '% e jy;l/ e O )

needed to solve

field eqgs. in ED
In the case of dust: FE— T"",, =0 — V,u =0
"Geometry tells matter how to fall"

equivalent writing of FE: trace of FE

R—2R = kT R=Rr,
ic. R=—kT T=T",

Hence 1
RM — g (TIW _ 5TgW>

In particular: if 7= 0 (e.g. e.m. field)
R = gTH
in vacuum: R* =0
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5. Mean geodesic deviation relative to geodesic (4-vel. u*)
—Ric(u,u) = — R, utv”
1
= —r(Tu'u” — §T02)

1
= —r(pc’ = 5 (pc* = 3p)?)

Kc?

2
= —— -3
5 (pc” —3p)
gravity is attractive if pc? 4+ 3p > 0
The Newtonian Limit:
- i
Fiy = —Gomlmz—3
r
pass to continous mass distribution p (my ~ p(7)d>y, me = m at ¥ = 0)
F=—-mVp with p(z) = —Gfdgyé(;%
Aﬁ = —4A7)(T)
Hence:
Ap = 4AnGyp Poisson equation
Assume
Gy = M + Py |huw| < 1
hywo =0 (huw(t,7=0) =0)
i1 i . 2¢
— I 00 — §h00,i = g 1.€. hoo = ?
Roko =Mook — Moo +O(h?)
——
=0
1
= C—Q%‘k
1< Ay
Ry = C—Q;SPH -2
Assume further: velocity of matter |] < ¢. Then |T¥| < T
(e.g. dust:
i i _ 1
o "TRE
T4 = puid = py2vivd, T = 22

Then T =T%, = T = pc? y&1, da U] < ¢

00-Component of FE:
3 :‘€C4
SAp = kpc(1—3) ie. Ap = "-p
——

N
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— identify constants:

87TG()
Ro = A
————
The cosmological Term: (Einstein 1917)

GH — Agt" = kT
A: cosmological constant, relevant today
- consistent with 7" , = 0 because g"” , =0
- LHS of the form aG* + bg"” is the most general expression D|[g|*” which

- contains derivative of g,, of order <2
- D[g}/“’w =0
(Lovelock’s Theorem)

- Rewriting G = kg (T“" + é\—og“”)

— = %g““ is en.-mom. tensor of vacuum

pc*(000
0 |p 2 A
= = —0CT = ——
0l p p P o
0 p
pc? +pP =2 A > 0 : gravity is repelling

Ko

Today: p = Wpc? with W = —1 (dark energy)
Observational data do not prove W # —1

5.3 The Hilbert action

The FE can be obtained from a form covariant variational principle.
Preliminary: canonical measure associated with g,,: Transition function z = X (z)

d"r =

ox’
det ( 6j) ‘ d"T is not invariant
T

oxk 0

9i5(Z) = %@gkl@)
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and

thus

But
d"z = +/|g|d"z is invariant

n o'
Vil = v/l e (5

Action: Let D C M (space-time), compact

Splgl = [p Ry—g d'z R: scalar curvature of (g,,)
Property: The Euler-Lagrange equations to Sp are the FE in vacuum:
0Splg] =0

for any variation dg vanishing on 9D is equivalent to G, = 0

In fact:

50ld) = [ Gudgv=gdis+ [ WhyTgata
D D

J/

= W/ —g dog,
oD

=0
where

We = g, — g,
Note: W ,y/—g = (W*V/=g) ,

Proof: 6 [, Ry/—g d'z = [0 (¢" Ru/—g) d'x
/ (0R,.) g""\/—g d4x+/ R0 (g’“’\/—g) d*z
D

JD

J/

TV TV
I I
I't Ry =100 =10, + 17,00 =171,
variation at p € M — x( is normal coordinate

R, = (0I'%) o — (01 1a) o
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= (6Fauu)

)

a ((Sraua) v

)

But 0I'“,,, is tensorial
(8% v

T 1
g“”(;le = (glwéra;w);a - (guy(sraucf);lf

_ Waa vV «
I1: linear algebra: a n x n matrix A = A(z)
o det A =tr (A1A) (follows: logdet A = tr log A)
or else: det A = det(Ay,...,A,) A; ¢ i-th row

= L det A=Y det(Ar,..., Ai,..., A,)

1=1

n

= aijMij
i=1
j=1

= (A_l)ji det A
ATTA=1
= (AYA+ATTA=0

g = det(gir) ;
09 = 99" 0G, = —99apdg® y y ” N
(59 ) = 95519 = 0(g"™)V=9 = V=959" = 39"V~ 9(9ap09"")

0V=9 = 572509 = —5v/=99apdg™’
= 11 = =g (Ruwdg"™ — LRgasdg™)
=V—9(Ru — %ng,)ég“”
G
Proof: of W® /=g = (W*/=g) ,
Wy = W o + T, WH with [, = 20" (gapp + Gupa — Gops)
——

antisymmetric in
commuting o,

(_\/g)@ = %\/ _gglwg;w,a = %gaﬁgaﬂ,u

Remarks:

1.
0 / V=gdiz = —3 / Gopdg™ /=g d'x
D D

Hence:

6/(%R+A)\/—gd4x =0=G, —Agw =0
D

2. Sp depends on R, and hence on 9%g
Usual actions depend on the fields up to their first derivative.

40



A variant of Hilbert action of this sort is the Palatini-action

Splg, T = /DR\/—_g dx

where R = g®’ R, and R, is the Ricci of the symmetric connention I' independent
of g

Then
09 =0 =G =0

Include matter: Consider any field ) = (¢4) with action of the form:

Solb Voul = [ £, Vyi)v=gd's

where V, is the covariant derivative of g = (g,;)
L is invariant under arbitrary diffeomorphisms ¢

L™, V@*g@*¢) =@ "L(, vg¢)

= E( ) ) o
The Euler-Lagrange equations 4,Sp = 0 and
oL oL _
90s ~ Vra,om 0

A symmetric energy-momentum tensor is defined through

by [ £ Va0V Tdts = =5 [ D@01 g '

D

Read LHS:
d

Sl Vst

- linear in dg,, = dg,, (test function)
- defines T),, = T,,, (distr.)
- computation may require partial integration

A=0

About T",, = 0: expresses invariance of action under change of coordinates.
Let ¢; be the flow with generating vector field X

Then
/ ( )‘C(@t*d}? V¢t*9¢t*¢) V _gtpt* d4£L'
p—t(D

is independent of t — %(. ) Ji=0=10

d
bg = w'e| =1
g dt@t g o x4
<5g>,uu = X/\g,uzz,)\ + g)\zxX)\,u + g,LL)\X)\,zx
Xy + Xosp
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both expressions are tensor fields, agree in normal coordinates, hence in any

Thus, by 0,5 =0

d v \/
%( ) o _/ %T“ (X + Xosp) —gd'z
= D N N~
=TH Xy =(TH Xp),, —TH v Xy
WI/
e /
/D (T‘LWX;L);V \/__g d4l’ - /8D T#VXAL -9 do”

=0

— T"., =0in all of D

Full action:

1
/ (§R + A+ kL) —gd'x
D

—04(...)=0: G —Aguw =T,
(Note: Palatini method may not work)

Example: The freely falling e.m. field
Basic fields: e.m. potentials A,

Lagrangian:

L=+1F, F"
- —Llle,ngg"“gp”

where F,, = Ay, — Ay = Avy — Apyw

oL oL 1
= - __ TGPV . | — —
Y S

E.-L. equations:
Fr., =0 (Maxwell’s egs. in free fall)

energy-momentum tensor
1
59/ Ly/—gdz :/ [(595) + 5590‘65%6 V—gd'z
D D
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with

6,L = =L [FuEy, (" (89") + (69")g")]
= %F;WFangUgyagpﬁégaﬁ
= LF, F" 890

|
T°0 = —Lg™ — F,°F" = F,F* — (F,,, F*)g*°

same as in electrodynamics

6 The homogeneous isotropic universe

Goal: find "highly symmetrickolution of the FE in presence of dust/ideal fluid, represen-
ting the universe (Friedmann 1922)

Idea: universe is spatially homogeneous & isotropic on large scales:

Evidence:

- matter: not homogeneous on small scales:
distance between:

stars: ~ 1 ps: 326 light years
galaxies ~ 10% ps
clusters ~ 107 ps

largest structure ~ 10° ps
beyond that: matter ~ homogeneous & isotropic

- radiation: cosmic microwave background

isotropic up to 107°

6.1 The Ansatz

Time Slices (in suitable coordinates) are 3-dimensional Manifolds of constant scalar curvature.
Introduce them as submanifolds

My C R*: k[(2h)? + () + (2*)Y] + (2)? = Ry,
with £ = 0, %1, Ry > 0; metric gy on M, induced by
g = (dz")? + (d2*)* + (dz*)* + (dz")* on R*

List them up:
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k ‘ My (3-dim) ‘ curvature ‘ symmetry group L

+1 sphere >0 O(k)
0 plane =0 E(3): Euclidean motions
—1 | hyperboloid <0 L(k)
My is "highly symmetric": for S eS8
- S(Mo) — MO
- 5790 = 9o
- any points p,p’ € My are equivalent: 35 € S : p' = S(p) (homogenity)
- any two normalized vectors V, V' € T, (M) are equivalent:
35 € S:S(po) =poand V < S,V (isotropy)
Fact: Any Riemannian Manifold of sign (+ + +) and constant curvature is locally one of
the above.
Charts:

A: coordinates (z', 22, x3, 2*)

P = VRF kR = w), v =@ @R P
(for kK = +1: upper hemisphere only)
Ozt 1 ox? kxt

ot 2w(x)(_ )8xi Y

dzt =

. k o
g=> (da') + —5—— > a'alda'ds’

— Ro? — kr? Pyt
B: coordinates (1,6, )
xt =rcosfcosyp 2% = rsind
2 = rcosfsinp dz* = w'(r)dr = —%dr
go =1° ((d@)2 + sin? 9(d90)2) + (dr)* + k—rj(dr)z

= (1445 )ar2="0ar2

Variant: coordinates (x, 0, ¢)

sin y cosy k=+1
r=Ry< X w(r) =Ry 1 k=0
sinh y coshy k=-1
sin? y
go = Ro% | dx® + X2 (d6” + sin® 0dp?)
sin? y
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Spacetime: M = I x M, I C R (interval)
Metric
g = dt* — a*(t)go, a(t) >0 (c=1)

-~

(warped product)
The only 4-velocity field consistent with isotropy is

= (1,0,0,0)

Particles moving with u have constant coordinates in charts A,B: comoving coordinates.
For such particles ¢ is not only coordinate time but proper time.

Consequences:

- Hubble law: d
d

t
t

): spatial distance between any two such particles
) = a(t)dy

d(t) _ a(t) _

0 = am — H()

is the same for all pairs: relative velocity is proportional to velocity:
d(t) = H(t)d(t); Today: H(now) = 7282/

—_——

/—\
—

expansion rate:

U
=

Mpc
- cosmological redshift v;: frequencies, v AT =1
vo AT(I)
V1 - AT(Q)

—~

1), (2) at rest, comoving, z(t) = (¢, x(t))
Z(t) runs radially, by isotropy

dt = a(t)Bedr, since light runs along null geodesic and Z(t) radially

"d = di Al

_T:Ro—l/ _:RO_I/ —_
0o w noalt) niat alt)
At Al v AT alty)
Cl(t1> N G(tQ) 1241 N AT(2) N Cl(tg)’

If the universe is expanding, i.e. a(ty) > a(t1) then vy < 1y,

hence

i.e.

write ’;—; =14z Observations: z up to 7,8

Remark:
(Ro,a(t)) and (ARy, A~'a())) describe the same model (redundancy)
Set Ry = 1, formally replace k/Ry* ~ k

Ansatz: ideal fluid, T* = (p + p)uru” — pg"” with p = p(p) (equation of state) with
u* = (1,0,0,0) (by isotropy), p = p(t) (by homogeneity)
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6.2 The field equations

To show: FE satisfied by suitable choice of a(t), p(t)

By symmetry: Enough to consider a point (¢,0,0,0) for all .

Curvature contains 9*g ~ enough to keep Taylor expansion of g(t,z!, 2%, 23) up to 27
order in . We have

1 0
0
I = 0| —a?(8;, + katz")
0
Hence
guu,U:(), /.LZOOI'I/ZO
Gik,0 = —2aad;y 1st order is enough
gikl = —a?

Remember: T, = %g“p (Gvpo + Gopy — Guop)

Result:
FOM = —%(—2@@) = aa
[l =Tl = =
Fl” = ka2’

others vanish

- Ricci tensor:

ROO = —3&/&
Rj; = ai + 2a* + 2k
(others = 0; Ry o d;;, by isotropy)

e.g.
Roo = R%00 =000 — 00 + 1700 %0 — I'7 a0l %05
—_—— =~ =~ ——

- i\ =0 ;
- .
i @ a2
=3 -5+
a a a

-3(2)°
3
, 1
R:R’MZROO—?ZR&
i=1

- scalar curvature:

:—%(ad+ad+2a2+2k‘) :—%(ad+d2+k)
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- Einstein tensor:

G = R, — %Rgm,, is diagonal

ij = — (QCLCL + d2 + k’)
- Energy-momentum tensor:

Too = p
Tj; = pa'

- FE: (only interesting parts are diagonal ones)
G — Agpw = KTy,

(00)-component: 3 A
a? (a + k) P Friedmann Equations
(jj)-component:  +(2ad + a* + k — Aa® = —pa®
Remarks:

1. a(t), p(t) are solutions. Then so are a(t —to), p(t — to) and a(—t), p(—t)

2. "1st law of thermodynamics"

% (3pa®) = a(a® + k) + a2ai — Aa*a = a(2ad + a* + k — Aa)
— —pata = —po( la®)
dt" &~
Volume

replaces 2nd Friedmann equation
3. 1lst law is

0=1T",=T" +1v,,1T + 1", T"
for p =0:

™., =p+ 325+ Baa%
a a

R e d ,
= | Pa) +pga
L0
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4. Equation of state p = Wp
W =0: dust, W = %: isotropic e.m. radiation, (W = —1: Vacuum)

d d

el 3 = _Wp— 3
d
— o (pa3(1+W)) —0
a®  W=0
poca3IW =8 g7t W= 3
a’ W =—

Universe goes from being radiation dominated to matter to vacuum dominated

Henceforth: dust (ACDM) A cold dark matter

1
gpaL3 =C>0 constant
Then
1 C
a? —gf\a2 ——=—k
NI ALY
V(a)

Analogy: Energy conservation of particles moving in 1-dim. (%m = 1) in a

potential V' (a) and total energy —k

Special cases:

(a) static universe (Einstein 1917)
k=+1 V(a)=—1, V'(a) =0
! l
—Aa?=-1 « —2Aa+5=0=C=2a°A
Hence

(b) de Sitter universe (1917)

C=0 no matter, A =0
1
a? — —Aa® = —k
3
écosh at k=+1
alt) =4 Ze k=0
é sinh at k=-—1
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(c) A=0: V(a)=-¢ Big Bang or Big Crunch (or both if k = +1)

Solutions a(t) with a(0) =0

Parametric representation

k=+1:
a=1C(1—cosn)
2
0<n<2
t=1L1C(n—sinn) (0 < <2m)
2
k=0:
3
a= (%) t3 Einstein-de Sitter universe
kE=-—1
1
a = 5C(coshn —1)
L 1o (0 <n<20)
= 3C(sinhn —n)
e.g. k=41
da = %C’ sin ndn
dt = 3C(1 — cosn)dn
da sinn 9 sin®n 1+ cosn
= —— — a” = —
dt 1—-cosn (1 —cosn)?> 1—-cosn
¢ U
a  1—cosn

General case: solutions are parametrized by
A7 Cu a’(tO)

Instead (usual case in cosmology): - g today
- new parameters (reflecting today’s
properties of universe)
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Reintroduce Ry:

Divide by a(ty)? (# 0, excludes static solutions)

(%)2_%A(%)2_1p<to>a<to>3_ 2

3 a(te)2a(t)  Ro’alto)

Pick Ry so that a(tg) =1 (go describes distances today)

aty) .
(tg) G(to) a(to)
22
a 9 1y k
3~ (e + O ™) = —

with

1A
0 p(to)

Oy = —— .
AT 3 e 3H?

New parameters: H, )y, €2, determine also
k = —sign S

% is energy conservation of non-relativistic particle (mass %),

potential
U(a) = —(Qua* + Qna™)

total energy €
Depending on sign 2, = sign A we get different types of motion:

A=0Q%=1-Q,
2, < 1 indefinite expansion a(t) with

lim () > 0

t—o0

2,, = 1 indefinite expansion

Q,, > 1 finite expansion, recollapse

A <0 finite expansion, recollapse
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A >0 U(a) has maximum

1 Q. 2
U (amae) = =303 (22
Qm 1
Amazr = (M)?’
If Qo > a(ty) =1, iee.
Qm > ZQA

then expansion is deceleration

Motion is bounded (from above or below) if

1— Q) —Qn < —39&(%’")%

can occur only for Q, + 2, > 1

2

-if Qp small: 1 -, < _3QA%(QTm)§
Q2 2,-1)°
A —
Q< 4( 3Qm )

SfQ, small: 2o < 9 (QA*)g

Qp 3Qp
Age of universe:

- in decelerating models (d(tg) < 0): a(t) < 0 in the past t < ¢,
Thus to < H~! (Hubble time)

- In general:

C.LZ

d
d—? = H\/Qy, — Ula)

to ! da
to = dt = Hl/ _—
’ /0 o /- Ula)

6.3 Which universe do we live in?
Observations — H, Qy, Q,,

H = a(to)

a(to

from redshift & distance: light from far away galaxies
ts: sending time, ty: receiving time

a(ts) = alto) — alto)(to — t.) + %d(tg)(to Pt

1
=alty) |1 — H(ty —ts) — §H?q(tO —t)2 ...

=
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for ty — t, small compared to age of universe

q= —% "deceleration parameter"
5140
= 14+ 2z=1+ H(to—t;) + H*(1 + 3q)(to — ts)* + . ..

Distance today:

dza%ﬂ%l}%%‘”W®Zfi%

1
= (tg — ts) + §H(t0 —t,)?

Eliminate ty — t, from equations

1
z=Hd+ 5(1 +q)(Hd)?* + ... (distance-redshift relation)

. v
Lowest order: interpret as Doppler: 1+z=1+4 —
c

H=2:
- z from spectra (emission or absorption)
- d standard candles (Cepheids, Supernovae of type Ia)

In higher order — ¢

=2
a
2q = Q,,, — 20 from e (QAa2 + Qmafl) = Q
Cosmic Microwave Background (CMB) = black body radiation at T = 2.73 K isotropic

Origin: Nuclei & electrons combined to neutral atoms at T = 3000 K
Neutral atoms are transparent to e.m. radiation

= red-shifted ever since by 1 + z = 30K — 1100

271 K
1
alt,) = afty) _ 1
1+z2 z
1% Friedmann
alt,)? 2 ~1
— (QACL(tS) +Qma(t5) ) =1- QA —Qm
2 S
-0 -0
. t )2
) = o o) = 520,
(0 = 20— 100 :

Intensity fluctuations of order 10~° of CMB
correlation length (“standard rules®)

As=2H(t)"  (...)

Seen on ... at
Ap ~ 1°

z, As, Ap determine geometry: open, flat, closed
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As = a(t)rAp = 2 'rAp with  dy = d,zlfr)

As = 2H(t,) ™ = 2070, 75278 wr) = VR =k
dr T dt
; -1
> X = =R / =
L = & Zﬁi(A(p) 1 0 w(r) 0 " a t)
RO Qm 1 1 dCL
. B _p- da
, siny k=41 ' 0 /0 —
R = X k= ;= sinn y 0 1 da
0 o _ v [ da
e Ee () /a Q% — Ula)

Another constraint on Qju, €2,
Qx4+ Q,, = 1.02£0.02

Altogether:

Q,, = 0.27 + 0.04 ,
(baryonic dark matter)
QA =0.73+0.04 —CMB power spectrum—0.02—0.04

Age of universe:
~1H ' =13.7-10° years

6.4 The causality and the flatness problems

Conformal time n:  dt = Rya(t)dn
Thus:
g = Ro’a(t)® (dn® — (dx* + sinn® x((df)* + sin® 0dp?)))

Normalize n =0at ¢t =0
1 1 dt/
— Ry~
=h [ x

possible if integral is convergent at ¢’ = 0.

Equation of state p = Wp (W = const.)

2

t* (t—0 =
—>Q<T)O( 7(_> ),Oé 3+W

% % is convergent if « < 1,1i.e. W > —1

Then, for t — 0

ot oo L
T~ a)
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more precisely

2
1+W

n(t) ~ (Roa(t)) ™

Geodesics ending at x = 0 come in radially (df = dp = 0)

g = Ro*a(t)? (aln2 — dXQ) : conformally equivalent to (1 4 1)-Minkowski

— null geodesics run at =+ 45°

Observers at x (fixed) causally connected to p only for x <7
i.e. at most at distance

2 a(t) 2

d: t = g
Roa(t)n 1+ Walt) 1+W

H(t)™!

Fort=t, and W = 0:
d=2H(t,)™" (today: at Ap ~ 1°
)

CMB is homogeneous on all of sky, thus includes regions causally disconnected at t,

CAUSALITY PROBLEM!

Possible solution:  inflation (W =~ 1)
— 7 is unbounded below
= causality problem disappears

FLATNESS PROBLEM:

k
1—Qy—Qp=——5——=0
A R%a(t)?
Similarly in the past:
k
Qp(t) = —
+() Ro%a(to)?

Q. + Qa2+ Q,at
= In the past, a(t) — 0
Qx(t) — 0
Universe must have been much flatter in the past (so that it is still quite flat today):

Possible solution: inflation
Qi (t)

because it drives . 0

24



7 The Schwarzschild-Kruskal metric

7.1 Stationary and static metrics

(M, g) pseudo-Riemannian manifold. Let ¢, : M — M with p,*g = ¢ be a flow of
isometrics

Generation vector fields of ¢,:

satisfies

=0

d,
Lrxg=—(¢s"9) Y

ds
Definition: A vector field K with Lxg = 0 is a Killing Field

> (0 is timelike
Definition: A vector field V with g(V,V) =< =0 is lightlike
< 0 is spacelike

Definition: A metric g is (locally) stationary if there is a chart so that

Juwo =0 and 8%0 timelike

Then K = -2, ie. K* = (1,0,0,0) and

920
(LKQ)W = K)\g/w,)\ +g)\1/ KA,,U +g,u)\ K)\,l/
—— —— ~—~—
9uv,0 =0 =0
So K is a timelike Killing field. Conversely, g is stationary if there is a timelike so that
Lkg=0,(K,K)=0.

Proof: By construction of a chart where ... holds true. Let ; be the flow generated

by K and M D F be a spacelike 3-surface. (i.e. its tangent vectors are spacelike)

with some coordinates (z!, 2%, 23) < py

Set (t,z', 2%, 23) < ©y(po) € M. In this chart
os(t, 2t 22 2%) = (t + 5,2, 22, 2%) and

K" = (1,0,0,0)

S0

0= (Lkg)uw =K ¢uwr+0+0=guo
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Definition: A metric is (locally) static if in a chart (z* = (2°, 7))

0 i .
30 timelike and g = g, dz"dz” = goo(Z)(dz")* + ';1 g (T)dx' da”
~ i k=

@goo(f)zo

Le. static = stationary & go; = 0

—
i

Remark: In a (slowly) rotating frame, go; = —+(J A T)
So when g is static there is a globally non-rotating field (and vice-versa)

Intrinsic formulation: K = % K" =(1,0,0,0) is timelike Killing Field

K :gK - K,u = <g00707070)

K= K“dx“ = gooda®, dK = dgoo N da®
— K AdK =dz" A (dgoo A dz°) = 0

7.2 The Schwarzschild metric

Ansatz: for metric g = ds? solving the FE in vacuum
1
R'ul/ = Ko (T'wj - §Tg/’“/> =0

shall describe exterior of spherically symmetric non-rotating star

(in classical physics: ¢ = — <o)
d82 — 62a(r)dt2 o [€2b(r)dr2 + 7"2(d92 + Sin2 9dg02)] %
on M = 83 X é X 5;2 , with a(r), b(r) arbitrary (later to be determined from R,, = 0 (FE))
t T N
' g
(CR")
Remarks:

1. Metric is static, invariant under rotations of S?

2. The most general which is static, spherically symmetric is of the form  in suitable
coordinates (without proof)

Definition: (M, g) spherically symmetric:

(a) SO(3) > R acts on M as isometrics, i.e. R: M — M,p+— R(p) with R*¢g =g
(b) for each p € M, the “orbit“ {R(p) € M|R € SO(3)} is spacelike 2-surface

3. Replacing r* — f(r) (f > 0 arb.) still satisfies property (a)
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Keeping 72: Area of the sphere with coordinate r is 4772
Length of great circle on there is 27r
(but radius # r)

4. Transition function # +— t = et (— dt = e“dt)
(r,0,p: fixed)

amounts to
a(r) ~ a(r) + c = a(r)

— a, a represents the same spacetime (metric) but in different charts

Christoffel symbols: check selected symbols

I, = %gtt (Gur +  Grtt — Gt )
—_———

both =0,
because off-diagonal
— lef2a(r)i (€2a(r‘)) — EQCLI(T) _ a/(’f’)
2 dr 2
Iy = %grr(gtr,t + Girt —Gur)
~N— =~
=0 =0
d
— % (_6—213(7")) % (_62(1(7")) _ a/@Q(a—b)
Pttt = %gtt(gtt,t +9tt — gtt,t) =0
~~

=0, metric stationary
Ricci:

Ry=T%0—T%:+17ul" — T70l%,
g A/_J

a=r v =r
=0 a=t, o=r
a=7r, o=t
_ dia/€2(a—b) + a,62(a_b) (a/ + b + 7’_1 + 7“_1) . CL162(a—b)a/ .
r
a/
_ (CLH —db +(1,2 _|_2_) e2(a—b)
r
Field equations in vacuum: R,, =0
- From Rye 2 + R =0
"+ =0
P+ 1)
hence a + b = C' = 0 (without loss of generality by Remark 4)
- From Ryy = Ry, = 0:
l=e2 —2rhe? = (re’%)/
—re? =r—2m (integration constant m) — e
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- From R;; = 0:

/
_(_b12+bl/_b/2) _% =0

(r (207 —0") —2) e =0
already satisfied

d d
—(1=2rt)e®=—1=
dr( rb)e dr 0

Result:
2 2m 2 2m\ 2 2 (02 1 w2 2
g=ds*=(1——)dt*— [[1—— dr® 41 (d0 + sin Hdgo)
r r
for r — oo: g tends to Minkowski metric in spherical coordinates

Newtonian potential ¢ in weak field

_02( 1) = ch_ GoM
@—2900 = P ,

GoM (> 0)

c2

=m=

At r = 2m (Schwarzschild radius), g,z becomes singular (r > 2m for now) in the chart

- light cones: ds® = 0:

degenerate at r = 2m

infalling light, starting from (¢, o)

dt = (1 - Q—m) (—dr)' = ——_ ar

r—2m

r
t 70

/dt:/ L
to . T —2m

- The line r = 2m (, ¢ fixed) is a single event: dr? = (1 — 22) dt* = 0

2 % —
—(1——m) r N\ 2m 0

r fixed r

— 400 as r \, 2m

dr
dt

o8



- One finds: (R=0)

48m?
Rop s R = —T (invariant)
r
regular at r = 2m
- We'll see: there is a chart extending past r = 2m
Example: Sun: r=2m = 3 km, Ry =7-10° km

7.3 Geodesics in the Schwarzschild metric

- timelike geodesics: free fall of a body
— orbits of planets
— deviations from Kepler’s law
(perihelion advance)®

- null geodesics: light ray
— light deflection®

Lagrangian Function:

L=g(z,1) = — 7 : affine parameter

) 2 (1 2) 72 (82 4 sin? 0

r

1

(timelike: £ = 1, null geodesic £ = 0)

—7T: proper time
Geodesic equation:=FEuler-Lagrange equations for £

f-equation: (?9_5 = —2r?sin 6 cos A
a—L. = —2r0
00

— —(r%0)* +r2sinfcos > = 0

0(t) = 7 is solution: orbit is in equatorial plane

In general: initial values €, & : gleé
define plane in R3:
take it as equatorial plane
—0=20=
—0(t) =2

— orbits are planar
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Alternatively: deduce from rotational symmetry by Noether

Lagrangian: (planar problem)

L=L(tr ¢ b7 ¢.7)
= (1-2m) 22— (1-22)7 2 — (rg)?

T

@, t cyclic variables: conservation law

10L

5% = —r?p = —I (I : angular momentum)
1oL ] 2m i . .

59 . =€ energy

independence of 7: £ conserved

Problem reduces to radial one:

T r2
2m 2
o () (2 )
T T
V(r)
Radial motion:
- particle of mass 1 (L=1)
bV - 4
——
effective potential
for radial motion
1 1 12 12
V()= 5 % t3= (m = GoM)
~—~ N~
GR correction
Features:
1.1=0: iV(r)=4-"2 as with Newton

particle crosses r = 2m in finite proper time
2. Even for [ > 0: capture is possible
3. %V’(r) =75 - i—z + ?’T—f = TL‘I (mr? — 1?r + 3ml?)
[ fixed:
Non-relativistic: One circular orbit

To = —

3
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GR: Either two or none:

P 12m202)E

T+

2m
for 1> > 12m? (none otherwise)
r4 stable, r_ unstable
e light (£) =0
Vir)=(1-2) 5
For €2 > 271;2: capture %%
Meaning of [, e: equation of straight line
in polar coordinates:
rsing =b
Frsing + r2p cosp =0
0 ¥ 190 ¥
att—oo (p—0): =2 =dd
—eb+1 =
l
= = -
€
2

Crosssection for capture:

Trajectories: goal: r = r(y)

llSG'LL:l
r

. Zd, " _ Zud/ + d/ + 2m3u2d/
—_———

GR

l2

u”+u—£%:3mu2
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Perihelion Advance

timelike geodesics: £ =1 T = proper time

m
W+ u— — = 3mu?

l2

m

(Non relativistic case: u” +u = 7

Solution:
l2
1 d=—
ug = 5(1+ €ecos ) m
=a(l —é)
(e > 0: perihelion at ¢ = 0)
ie. . J
=—=— 1li
2 ug 1+ecose ellipse)
pertubative ansatz: u = ug + v
1% order in v (or m, while 7 fixed)
" . 3m 1 2 2 2 RS
v+v—7( + Z2ecos @ + €” cos gp) X* X X
with initial condition v(0) = v'(0) =0
Ay
s 3 % is superposition of v/ +v =< Aycosgp
Az cos? o
Ay
— v = %Agw sin

A3(3 4+ $cos2p — 2cos

only the 2" order contributes.

u'(2m)
Ap—=—
7 u”(2m)
u'(21) = ug(2m) +0' (2m) = Agm = bmme
—— d? ~ A __u’(27r) _ 6mm
0 ] T TwEn  al-e)

U"(27) = uy(2m) + O(m) = —

in full agreement with observations: Mercury Ay = 43" per century (after subtrac-
ting influence of other planets Ay = 591" /century)

(apparent precession of equinoxes Ay = 5000” /century)
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ii) Deflection of light

null geodesics, £ =0 : u” + u = 3mu?

(unpertubed: u” + u = 0, solutions uy = b~'sinp — r=-1+ =t — rsinp=>5

uQ sin ¢
(phase such that perihelian is at ¢ = 7)

i.e. we have a straight line, as expected.)
pertubed: u = ug + v
V" + v = 3mug = 3mb ?sin® ¢

with v =0,0" =0 at ¢ =

NS

solution:

+ Sin@%—gm 1+1C082 1s’
= = — |zt = — - sin
EeTEE T T 2 et T 3

3 2 1
ey im(2 1Y) o
b 2 \3 3 ——
O(m) O(m?)

Zero shifted from o =0 to ¢ = Yoo

#o0 =

Total deflection
4m 1.75"

§=2pu| = = 10
el = 5 = DR oot

Experiment (1919, total eclipse)
<(A, B) increased by 24 at eclipse

7.4 The Kruskal extension: Black Hole

The singularity at r = 2m is fake: failure of chart.
There is an extension of the Schwarzschild metric (Kruskal, 1960)

Kruskal transformation: (u,v) < (¢,r), 6, fixed
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We have (cosh® —sinh?® = 1):

u2—02:<#—1>eﬁ:g(#)%%%%

v t
Z —tanh [ —
u o (4m)

{r <2m} < {|v] < u}

Metric in new coordinates:

2 om\
g:(l——m)dt2—<1——m> dr?
T T

2 + angular part (df,dp) x % % x x
_ 32m e m (dv* — du?)

r

with 7 = r(u,v) as a solution of x x xx

Proof: rescale r = 4mr’, t = 4mt’ (drop ’, effectively 4m = 1)

ou ou 1,
du = Edr + adt =2r(2r — 1) 2¢" cosh(t) dr + (2r — 1)
dv =2r (2r — 1) 2 ¢"sinh(t) dr + (2r — 1)2 €" cosh(t) dt

dv? — du® = (2r — 1) (dt)* — 4r(2r — 1)~ 'e* (dr?)
—2r e (1= ) ()P = (1- &) (@)?]

N|=

e’ sinh(t) dt

The extension: g(x) is monotonic increasing (¢’ > 0) for
z € (0,400)r — g(z) € (—1,+0)
Hence r = r(u,v) uniquelly determined by 3 3 as long as
2

u? —v? > —1, ie. v —u? < +1

So the metric defined by x s x x % extends from I to I — IV, still solving R, = 0!
Remarks:

1. On region /1, introduce Schwarzschild coordinates (¢t € R, r < 2m)

3 t
etm sinh (—)
4dm
1

I~y
I
N
—_
|

(\&)

S~

N——
N
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g <« Schwarzschild metric
But: r is time coordinate
t is space coordinate

2. v = u is an event horizon: boundary of the region'
causally connected to distant observer

Any particle entering 11 will reach singularity » = 0 within finite proper time

Timelike curve crossing horizon reaches singularity » = 0 in finite proper time:

. . d d .
x(A) (arbitrary parameter) with 9%, 9% finite

As A — A, (corresponding to r = 0)

:0,\%v10g
Then
u? —v? =0\
r=0(\2)
A=0 g A=0 =0
T :/ ﬁd)\ ~ / rT2dN\ ~ / A1 < +o0
Visualization: Equatorial plane § = 0 in the time slice {t = 0} (2-dim)
embedded in 3-dim Euclidean space (cyclic coordinates z,r, @) as a
graph r = r(z) (surface of evolution)
fix ¢
om\
—ds? = _ - 2 ()2,7,2 2
ds (1 . ) dr r'(2)*dz" 4 dz
—————7(2)%d2?
T—T‘Zm
'(2)? T _1)=1 = r’(z)z—T_Qm
r—2m N T 2m
2m
r—2m
solution:
=t (=) =)
r(z) =—+2m —r'(z) = —
8m 4m

Einstein-Rosen-Bridge

Application: Collapsing stars Star masses 0.07 My < M < My End of thermonuclear
evolution

- star may lose mass
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M < 1.4M, white dwarf

M< 20, <

- remaining mass
1.4Mgo < M < 2M; neutron star
M > 2M; Dblack hole (nothing can sustain gravity)

Theorem: (Israel) Any static black hole is Schwarzschild (and hence spherical symmetric)

Theorem: (Birkhof) The most general solution of R, = 0 which is sphericylly symmetric
(but not necessary static) is a piece of the Schwarzschild-Kruska metric
Remark: c.f. Newtonian gravity: spherically symmetric
mass distribution (but not static):
p(r) = -t

(M: total mass, const)

— independent of ¢

Proof (sketch): in suitable coordinates
ds* = e**dt* — (€2bd7“2 +r? (d92 + sin? 9dg02))
with a = a(t,r), b=0b(t,r)

Transformation compatible with Ansatz:

t
di = e “Odt e t—1= / e~ ds

6&(1&,7") (f,r)—c(t)dt = ea(t,r)dt

_
= a(t,r) = a(t,r) + c(t)
Ricci Tensor: non-zero components are:

Ry = R;?) —f (0) : static component
R, = RO 4 2o f ft,r)y=h*—=ab—b
Ryp = Ré%) + eQ(b—a)f

R,, = (Sin2 9) Ryo

Ry =R,=2

Field equation: R,, =0

Ry =0 —b=>b(r)
Rue?®™ ¥ + R, =0 — d+V=0

as before
f drops out

— a(t,r) +b(r) = c(t) c(t) = 0 wlog
—a(t,r)=a(r), f=

Back to collapse:

0 — back to static case Schwarzschild metric
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7.5 The Kerr metric and rotating black holes

Described by a stationary (rather than static) metric
Coordinates: (Boger-Lindquist)

teR, r>0, 6, ¢ spherical coordinates

parameters: m,a

Notations:

A=7r>—2mr—a®

p? =1%+a®cos’
»? = (7“2 + a2)2 — a’Asin?6
(identify: p*A — 4mr?a®sin® 6 = X2 (,02 — er))

Metric: (Kerr 1963)

2 4 5?2 ’
ds? = (1 - ZQLT) dt® + TZQaT sin? 6 dt dp — ?Sin29 dp* — pz dr® — p*db?

Alternate expression: complete (dp? + ...)?
2 T2 2
ds® = %A dt* — 7 sin® 0 (de — Q dt?) — pZ dr? — p* df?

with

Remarks:

1. The special case a = 0: — Schwarzschild metric

2. Kerr metric solves R, =0
It is the most general metric which is stationary and axisymmetric
3. any axisymmetric solution is given by Kerr (extension thereof) (c.f. Birkhof)
any stationary black hole is given by Kerr (extension thereof) (c.f. Israel)
"No Hair"theorem for black holes: There are caracterized by a, m (and nothing else)

(& charge for R, = Tjcrtrmem)

4. Kerr — Minkowski (in polar oordinates)

5. Meaning of parameters:
m: mass (from weak field limit at r — o0)

J = am: angular momentum (without proof)

67



The metric has a singularity (g,.) at A =0, i.e.
r=ry=m=Evm?—a?
(exists only (and with it the black hole) for |a| < m)

Henceforth: rT>Try
The metric has Killing fields

- ¢ is spacelike

(¢7 QS) = gWP < 0

- K is timelike

(K,K) =gy = %(r2+a2c0820—2m7’) >0

for
T>T0(6):m+ m2 — a2 cos2 6
Meaning of ergosphere: ‘different observers
in there: 4-velocity w (t,7,0,¢) is timelike

i) static observer has fixed coordinates r, 0, ¢:

u = (£,0,0,0) oc K* = (1,0,0,0)

It can exist only for r > ry(6). For r < r¢(#) any observer is dragged w.r.t. coordinate
system

ii) stationary observer has fixed r, 6 and

w:d—gﬁzf ut = (£,0,0,wt)
Codt ot x (1,0,0,w)
p’ ? 2
(u,u) o 5P A—anﬁ(w—ﬂ)
ut is timelike
PP A .
lw — Q] < S amd (< Qif r <re(d))

iii) freely falling observer starting from rest near infinity
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Note: V Killing field, z(7) geodesic. Then (V; &) is constant in 7
By Noether: trajectory of £ = %(w, )
conserved is: Vaaax—ﬁ = V%,

Take V = ¢ and u = . At 0o & rest: (¢, u) =0

At finite positions along the geodesics
2

0= (¢p,u) = —% sin? 6 (¢ — Qf)(—Q)

= % == Ccli—f angular velocity of drag
2mr
= 5z ¢
Angular velocity at r = r:
by .y = r+2 +a? = 2mr
2mr a
g = r=ry S 4 B 2mr,

Energy extraction (Penrose 1969): Freely falling particle, p = mu

Lenergy’ E = (K, p) conserved

K timelike: E >0

For observers near oo: metric Minkowski, K = (1,0,0,0) E = p*
E is energy for that observer

particle decays

P=Dp1+Pp2

2 gets out from ergosphere: Ey > 0
possible: £} <0
= E = E1 + E2 < E2

Extracted energy:
Ey,—FE >0

7.6 Hawking radiation

Emission of energy is posiible even from a static black hole, provided quantum effects are
taken into account: pair of particles created from nothing:

0=pi+po
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_ outside of horizon: 0 = (K, py) + (K, ps) = By + E
outside of horizon (K,p1) + (K, ps) 1 9

- inside of horizon: either signs: possible but they do not get outside of horizon

Vakuum fluctuations produce 1 inside and 2 outside.
Discussion requires: QFT on curved spacetime.

a) Classical Klein-Gordon field

Action for scalar field ¢ of mass u is

S = / d*z/|g| & (00" p — i*¢%) = /dtL
W—/\ ~

:>L:/ d*x\/|g|L
20=0
oMo = g"0,p arbitrary transformation x — I : Q(7) = p(x)

— S invariant

equations of motion

5, 0WIglL) _ OWIglL) _

2(dvp) dp
is
dy < Iglg"”f?w) + 12V ]gle =0
= @+ %) =0 Oy = l91720, (919" 8,.)

Conjugate momentum
(z) = V/19]9"* (9u) ()
Hamiltonian

H = / d*x (7 Oy — L)
9=0

r = (2° 2); initial data o(z) = go(x)}xozo

make up phase space



Poisson brackets

f, h complex solutions of Klein-Gordon equation

i* =ig" (f O,h — (0, f)h)
Then

3./ 19l = (j“ |g|) = 0
9 (Vlolg"* dup) +1u2/lgle=0

Inner product on K = {solutions f(x)of Klein-Gordon}

(1) = / Vidlitde, = [ do /gl

0—¢

m

independent of X, resp. of t:

(/z: - /z) 917" do, = /Vd4f’f ( \g\j")’“ —0

Properties:
m _<77 E)
hence (h = f)
=0
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(-,+) not positive definit
but non-degenerate

(f,h)y=0 Vfiek = f=0

(f,h) =i / - d’x (7< Iglgo”auh> - ( \g\go”ayf) h)

since h glg®0,h| , . are arbitrary
T V=0

0—0?

Define functions a(t) on I*:
alt) = (f.¢)
=i [ e (Twr@ - (Vils"aT) Wela)

Data a(t) determine p(z), 7(z) a(t)’s are not independent:

a, a’s on equal footing

Poisson brackets

b) Quantization of K.G.
@(Tf ) — a(/f)

classical quantum
observer observer

with a*(f) = —a(f)

Algebra A generated by all a(f) (f € K).
Quasi-free states w on A specified by
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(i)
w (@ (fla(h)) = (h,pf) &

with p positive semi-definite on K, i.e.

(finf) >0

(i) w(“[a’s a*’s*) = by Wick’s Lemma: sum over all products of dede

Then

implies

p=CpC

h,pf) —{(f,ph) = (f,h -
(h,pf) —(f,ph) = (f,Nh) Cof = CoC'f = pf

:_<ﬁf’h>

Particles & Antiparticles H C K subspace such that

K=HoH
with H = C'H and
(f,f)=0 (f €H)
(f,h) =0 (f € H, heH)
abstract: ﬂ 1-particle states

H 1-antiparticle states

Examples of quasifree states for K.G.

p=Na&N block diagonal w.r.t. K = H®H
with (f,Nf)> VfeH
®N —-N =—-1-N

Example: N =0
w(a*(f) a(h)) =0 VfheH
GNS Hilbert space is bosonic Fock space F over H such that

a(f)2=0
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JF is spanned by

a*(fi)...a"(fu)Q (fi e H)

Indeed

w (a*(f)a(h)) = (0) = (2, a*(f)a(h) ) (f,heH)

(all other expectation values e.g. for h € H follow)

¢) Quantization of K.G. in Minkowski space

Solutions f € K of (O + u?)f = 0 are superpositions of plane waves

f = cilfaze)

with w = \/k 2 + 2 = w(k)

H = {positive frequency solutions} satisfies requirements:

Ko>f=f,®f with f,eH, f.eH

0 = [ S (5o ) = L)

with

w(k)
Note: ‘H is Lorentz invariant
inertial observer, worldline x*(7) = ufT + b* ut b fixed
ei(E-f—wt) _ pikuat _ —ikubt —ikyutT (u,u) = +1
k>0
0 T o
- i =wu —k-u
E* (w, k) with .
>wu’ — |k| @] >0
—~ —
<w  <uf

Quantization of K.G. by picking “vakuum®
- Minkowski vakuum N =0
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- positive temperature state (e.g. CMB)

ol () o) = [ Qf;’,}) e JEE (fhen

w (a*(f) a(f)) expected number of particles in the 1-particle state f € H

f: wave packet concentrating at Eo

w@ ) alf) — o D)

e3w(ko
=1
thermal spectrum

This state is not Lorentz-invariant, since w(k) is not.

Remark: In a curved spacetime with stationary metric (3 timelike Killing field)
solutions have fixed frequency (or superpoitions thereof)

H = {positive frequency} ?

N=07 — Boulware vakuum
Mathematically possible. But not physically correct.

d) Regge-Wheeler coordinates

New coordinates (t, 7,0, ): transition from Schwarzschild coordinates,
t,0,p fixed

+2ml (r 1) dre 4 1 |2\
* = (0) _— s = = _
" " miog 2m dr - —1

2m

Maps r € (2m,o0) +— r, € (—00,00) (tortoise coordinates)

Metric

2
a5t = (120 (@) a0 ) i = ()

Consider particle radially infalling, crossing horizon (¢ — —o0, r, — —00) at proper
time 7 = 0 (w.l.o.g.). There r ~ 2m

— 9.
72 =—e* <0, L mt:e
2m
2m  dt
— T —2m = —e€T, t=——=—
T dr
t = —2mlog(—7) + const

r, = 2mlog (—%) +2m (7 /0)
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K.G. in Regge-Wheeler coordinates:

representations of angular-part-solution f of K.G.:

00 l

Ftr0,0) = MYM(&P)
=0 m=-—I

— K.G.
(atQ - ar*Q + ‘/l) flm =0
2m\ (2m I(l+1)
= (=) (55 )
has limits
0 re — —00 (r — 2m)
Vim(r) — { 2 re — 400 (1 — 400)

As r, — —o0, solutions look like

flm(ta ’I“*) = fzn(t - T*) + fout(t + ’I“*)
fin © incoming from white hole

fout = outgoing to black hole

The expected number of outgoing particles (to r — +o0)

Consider wave packet f which

- consists of positive frequencies (peaked around w)

- outgoing for t — +o0
For r, — +o00 metric is Minkowski: f represents a particle at late times
n=w(a*(f)a(f)) occupation number of f

What is w? Equivalence principle suggests:

On states incoming from either r, = —oo or r, = +00 and to an observer in free fall
there, w in Minkowski-vacuum to him. (Unruh vacuum)

f is not of that form, but R and T are
w(a*(R) a(R)) =0
Since observer with r = rg (19 — 400) is freely falling and R is of positive frequency

— W (a*(R a(T)) :8 } since |w(A*B)|2 < w(A*A)w(B*B)
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= n=w(a*(T)a(T))

at r, — —o0
—iw(t—7rx)

Toxe
Freely falling observer approaching horizon:

t —r. = —4mlog(—7) + const.

T e4im10g(—7’) <0
I 7> 0

T =T, +T_ decomposition into £ frequencies

Unruh vacuum: w (a*(T) a(T})) =0
n=w(@(T) a(T.) = (T, pT_) = ~(T_,(1+ NIT)

= _<T—=T—>

T, : positive frequency part

T (1) = / dwT 'y (w)e ™7
0
is analytic in upper half plane in 7 (T_ in the lower) (log z = log|z| + i arg(z))
T()(T) _ e4im10g(77) _ e4imarg(77) (7_ < O)

Analytic, const. to 7 > 0 through lower half plane

T<0
e~ 5 ()

Cq +c_=1
T=T, +T & ce ™™ c et = (1>0)
1 .
=y = 1 _ oFsmma” T(r)=T(-7)

T (1) =c (T(r) + ™™1(7))

= (TL,T.) = |e 2 (1 — &™) (T, T) (<f, TY = —(T,T) = —<T,,T,>>

:ﬂ <<T,T>:0 nooverlap)

1 — 687rmw
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(T,7T) occupation number of outgoing state pea-
e8rmw _ | ked at frequency w

(Hawking Radiation)

Apart from (T,7T) (which depends on f and w) this is black body radiation of

temperature

r he?
8tm  SwGoM

B =

8 Linearized Gravity

8.1 The linearized field equations

Metric which, in suitable coordinates, is

Guv = N + huu
h;w = hl/lt
L% = 597 (Gusw + Jupn = Gyurp)
= %77&[3 (huﬁ,u + huppu — hlw,ﬁ) + O(/h2>
= % (A% + B — By )
RY5, =T, 53—1%,,+ OI?
78] w8 Bt ( )
—O(h2)=0
RMV - Rauau - % (_th,y - h,;LV + hau,ow + hal/,ocu)

Convenient: trace reversed pertubation

’yuuzh;tu_%n,u,yh
_ 0 1 _
v=7%% = h% —54h=—h

SO

1
G#V = R#y — 57]/1,1/R
[ = % <_|:|IYMV - n,UV/yaﬁ,aB + fya,u,ow + fyazz,a,u)
Field equations (G, = kT),,), linearized.
Remarks:

78
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|huw| <<1
with A = h%,
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1.2 G/M/,y = _nylil”y - nlw’yaﬂ,aﬂu + ,yozu’al/l/ +7al/,a‘uy =0
——
O yer,
linearized 2" Bianchi: G, = 0

— integr. condition for LFE: 7", = 0
2. Lorentz transformation x* — A*,x” + a* with A,7A, 157 = N

hyw — NN D,
Vv AMO-AZ/T’}/O'T

That makes the LFE form invariant.

3. Remark 2 does not mean “gravity + SR are compatible®; at least not if Equavalence
Principle has to hold true.

To be ruled out:
metric (distances!) is giben by (a)n,, of (b)g., = M + A

(a) dust: equation of continuity (pu*), =0

0=T", = (pufu”) , = u" (pu”), +pu’u”,

’ =0
—  u"u”, = 0 geodesic equation for 7),,:
dust particles go straight w.r.t. 7,,, no attraction, no gravity
(b)
EEE ;ZZ: =0 } incompatible except for I'*,, = 0

8.2 (Gauge transformations and gauges

LFE are gauge covariant: is a result of general covariance of FE (covariant w.r.t. coordinate
transformation, resp. diffeomorphisms)

QT T, g ©'g

LFE are covariant under “small” diffeomorphisms

T =o'+ H(x) (& arbitrary, but small)
L¢h
gHg+Ldm:n+h+Lw+Lh+5éﬁ
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i.e.

huu = h,uu + fanuu,a + f,uu + 51/#
Y — h,uu + gu,u + gu,u - %nuu(h + 2504’&)

’Yuu — ’yuu + gu,u + - = %nuuga,a
——
Ty = T

Fam/ — Fauu + fa“uu
R+ R%up0 + ga,uuﬁ - gu,ﬁuv =R

= LFE is form covariant
(partial analogy to Electrodynamics

(a):A#l—u‘lu—i—E,# (b):F,uy'_)F,ul/)

Gauges: restrict gauge freedom (a)

successively

i) Hilbert Gauge

Nz

Y, =0 (cf. Lorentz gauge A", =0) ®
Start with ¥ arbitrary: v = F# 4 ¢ 4 £VH — %Ulwgaa

solves & if
(WHV,V :) 7}“’7” + gﬁwju + é'l/,,ltl/ - nuugaa,u
Df“ :60’01/»"
-0
le.
v
N
0 5# =—7 N7

inhomogenious wave equation, can be solved for £# even for prescribed initial values
gﬂ($0 = 07 f)7 80€“<x0 = Oa f)

Recall: Ou=f U(x°,7), Doul(...)
D(x):ﬁ@(xo—r)—é(xo—f—r)), = (2°,2), r = |7

Residual gauge transformation: [J &* = 0
LFE: —U v = 2kT,,
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- consistent with T , = 0

- Field 7, propagates at speed of light

ii) In vacuum (7, = 0) of if T#, = 0 (e.g. electro-magnetic field)

O~y=0
Traceless Gauge: v=0 [ Y)
Starting from 7" (in Hilbert gauge), v** solves & in addition if
y=7-2,=0 with O ¢ =0, =&, =15 YY)
For such v
0=0¢,=307=0

AAA will hold, provided at 2° = 0

£ 0 =37 OoE” , = 5007
50,0 + +g:

N[ =
]
T
+
|
70"
I
N[ =
Q
=2
L &
L &
£ &
4

assign E, 5 arbitrarily

Poisson equation for £%(z° = 0), and £° ;(z° = 0) given by ddvdd
Still residual: ~*, Lgr =0, §a =0

Note: in the Traceless Gauge: v, = hy.

iii) transversal traceless gauge

ho =0

can be achieved. In this gauge (resp. coordinates) the metric distribution is only in
space h;; # 0.

ITT gauge: I'*00 = 1 (h%0 + h%,0 — hoo™™) = 0]

8.3 Gravitational waves

In TT gauge: h** =0, h'; =0, h7;=0
LFE:

DhU:O

Plane wave solutions

hij = hij(€- T —t) € : direction of propagation,

el =1, € 7 = e;a’
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hi; depends on s € R only.
Does h;; satisfy the gauge conditions (because if not it’s useless, then O h;; = 0 doesn’t
describe gravity)?
dh;;
=0
ds ¢

Motion of test particle: Let u# = (1,0) initial 4-velocity (at rest in TT coordinates).

dut
w + I su’u® =0
dr

solved by u*(1) = (1,0)

world line (1) = (7, 7o)

dzt
dr
nearby particles have fixed coordinate differences m* = (0, @ )

:u'u'

Yet distances change

(n,n) = guntn” = —n 24 hij(s)ninj

&h;;
_ _ Fe — ()
3 ) = g &
=0

|:| hij - 8"3Mhij - 8“

Put differently: Coordinates:

it =o'+ Lh oY (— 3" =29
= (6", + $h*,(2)) 2"
Lom, |
o Sp Lpp - a oc) v
d7 (5 o AW @) 4 5 ) da
_—
O(Z/)

A : typical lengthscale of h,,
e.g. wave length

Claim: In a neighbourhood of world line z#(7) = (7, 0) the metric
Gy = N + O(R®) + O(F/\)
In fact:

NuwdZHdT” = 1, ("5 + Sh*5)(6" - + Sh";)dx"dx”
= (Nor + hor) da”da” + O(h?)
—_——

got
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Hence coordinates 7 are distances (up to O(h?), O(Z/\))
a'(t) =n'+ 10 (s)n? = n' — Lhy(s)n! s=¢€-r—t
A(E) = g ()
For n/ = e¢/: An'(t) = 0 by TT-gauge
— Gravitational wave is transversal.

ws

monochromatic waves: h;; = ;e
physical field is Re h;;) Amplitude ¢;; arbitrary complex with
J j

€ij = €jis
€; =0, define a 2-dim complex vector space
eijej =0

Pick &= &5 (3-direction). Then

enn €2 |0
e=| e —€11|0 | = (Ree) +i(Ime)
0 0 10

Ree } symmetric, traceless, real
Ime
A1) = ~4Re (ec®7)
= —% ((Ree€) cosws — (Ime) sinws)
— _% ((Ree) coswt — (Ime€) sinwt)

Special polarizations:

i) linear polarization: Ree || Ime (proportional to one another)

diagonal in the same real orthonormal eigenbasis €; L €5

e:A<(1) _01) (a € C)

Aﬁ@y—%<_n?[G%fbaﬁwr+ﬂmfbﬁnwﬂ

n2

ii) circular polarization: Ree L Ime & of same “length®
w.rt. (6,0) = D7, €;50i5 = tr (ed)

€11 €12 —€12 €11
Ree = Re Ime =+ Re
€12 —€11 €11 €12

= +R:z(Ree)Rz"

s
4
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cosp —siny
siny  cosp

where R, = ( ), Rotation by ¢

w.r.t. eigenbasis of Ree

1 0 01 1 =+
ReEZA(O _1), ImeziA(l O)’ e:A(iZ, _1)

(A€R) R,eR," = eT¥%¢
= helicity of gravitational wave is £2  (e.m. wave £1)
Motion of test particle with 7 on unit circle:

If particles not in free fall: add any other forces to tidal forces

Gravitational wave detectors: LIGO,. ..
goal: sensitivity 2% ~ 10~

on earth waves exp. with 22 < 102!

Emission of gravitational waves: Source T" localized in space

O A" = =2rTH Dyet(z) = —6(2° — 1)

retarded solution

v 2I</ 4
(@) =~ d'y Dyer(x — )T ()
— _2_1% d3yle (37,75— |f_3~7|)
2 |7 — ¥
Forr > d < A
> A
LN
o 57 y " (¥,¢ — 1)
el“jr(s)
K ce9 ) )
I= 260mc5 tr Q (Einstein 1917)
e

Qij(t) = /d3y T(7,t)Byiy; — 0457 )
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