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Exercise 8.1 Independent Dimers in a Magnetic Field

We consider a system of independent dimers described by the Hamiltonian

H0 = J
∑
i

(~Si,1 · ~Si,2 + c) (1)

where i numbers the dimers and m = 1, 2 correspond to their two magnetic sites, c is just
some constant.

a) What are the eigenstates and the eigenenergies of a single dimer? Choose the
constant c in such a way that the groundstate energy vanishes.

b) We now apply a magnetic field in z direction leading to an additional term in the
Hamiltonian,

H′ = −gµBH
∑
i,m

Szi,m. (2)

How do the eigenenergies change? Sketch the energies with respect to the applied
field H and determine the particular groundstate. Discuss in this context also the
entropy per dimer s(T,H), in particular, in the limit T → 0.

c) Calculate the magnetization m and the magnetic susceptibility χ and discuss their
dependence on H for different temperatures.

Exercise 8.2 The Ideal Paramagnetic Gas and the Law of Mass Action

The goal of this exercise is to understand the statistical mechanics of a mixture of ideal
gases undergoing chemical reactions. An application is an ideal gas where paramagnetic
atoms may combine to form molecules whose magnetic moment vanishes.

a) Consider r different substances A1, . . . , Ar (e.g. A1 = H2, A2 = O2, and A3 = H2O)
that undergo s chemical reactions

να1A1 + · · ·+ ναr Ar = 0 ,

where α = 1, . . . , s and {ναi } are the stoichiometric coefficients of the reaction α (in
the above example we have s = 1 and ν1 = 2, ν2 = 1, ν3 = −2).

Let Ni be the number of particles of the substance Ai. Now, if the system is
materially closed the set of possible variations in the number of particles is given by

dNi =
s∑

α=1

ναi dλ
α ,



with independent variations dλ1, . . . , dλs. Show that, under constant temperature
and pressure, the condition for thermodynamic equilibrium reads

r∑
i=1

ναi µi = 0 ,

for each α = 1, . . . , s independently.

b) Let each substance Ai be an ideal gas composed of point particles of mass mi and
with binding energy Ei. The Hamiltonian for the particles of type Ai then reads

Hi =

Ni∑
j=1

(
~pj

2

2mi

+ Ei

)
.

Compute the grand canonical partition function Z (fixed temperature, volume, and
chemical potentials) of the system and show the law of mass action: At equilibrium
one has

r∏
i=1

〈Ni〉ν
α
i = fα(T, V,E1, . . . , Er) =

r∏
i=1

(
V aie

−βEi
)ναi ,

for each α = 1, . . . , s. Here ai = (2πmikBT )3/2.

c) Consider now an ideal paramagnetic gas under the influence of an external magnetic
field H (see also Section 3.5.4 in the lecture notes). The particles A+ (resp. A−)
of mass m have a magnetic moment M parallel (resp. antiparallel) to the field.
Furthermore, an A+ and an A− may combine to form a single molecule whose
magnetic moment vanishes. The energy released in this reaction is Eb. The second
possible “reaction” is a flip A± 7→ A∓. Use the above results to compute the relative
magnetization per particle

σ = M
〈N+〉 − 〈N−〉

〈N+ +N− + 2N0〉
.

Discuss the high and low temperature limits. How do the laws of mass action read?
Compare your results also with the prior exercise 8.1.


