Mechanics Fall 2007, Solutions 9

1. A Hamiltonian system

(i) In general, a Legendre transformation looks as follows:
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and we can therefore express the above formula with
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We can see here that the inverse of a Legendre transformation is again a
Legendre transformation. L should depend on ¢ and g.

(i)
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Here, L(x, &) still contains p, on which it shouldn’t depend. Therefore, we
need to express p as a function of  and/or & . Using
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Now we can substitute p in L
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and find by rearranging the terms above slightly
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Compare this to the non-relativistic equation:
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The second equation of motion is here trivially
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Note: It is not possible to solve equation (7) for & , since it is inside a
scalar product. However, & is not a useful quantity in the relativistic case
anyway, as you will learn in your EM lecture.

. Lennard-Jones Potential between two molecules

(a) The center of mass of the system is given by R = 3(r1+r2) = (2,9, 2),
the reduced mass is u = % = 7, and the total mass is M = 2m. Let
r =r; —ry. Then the kinetic energy of the system is
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and the Lagrangian is
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where r, 0, ¢ are the spherical coordinates of a frame fixed at the center of

mass. The generalized momenta are
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The Hamiltonian is
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(b) The lowest energy state corresponds to p, = p, = p, = pr = pg =
Py, = 0 and an 79 which minimizes
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we obtain ro = (B/A)Y/% as the distance between the two atoms for the
lowest energy classical state. For this state the energy of the system is

Letting
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(c) If the energy is only slightly higher than the lowest and the degrees of
freedom corresponding to x,y, 2,6, ¢ are not excited yet (p, = p, =p, =
Po = pp = 0), we have
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the Lagrangian is

where p = r — rg < ro. Lagrange’s equations gives
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