
Optimization	

 Week 10	



Programming techniques for scientific
 simulations	

 1	



To code or not to code?	



Programming techniques – week 10 

Optimization and numerical libraries 

Optimization	



 First rule: Do not optimize!"
 What if the program is too slow?"

 find optimal algorithm"
 use libraries"

 What if the program is still too slow?"
 use profiling to determine which parts are slow"
 investigate slow part and check that data structures are optimal"

 are arrays, lists or trees better?"
 is the algorithm optimal?"

 check literature for better algorithms"
 use libraries"

 only then think about optimizing"
 Consider parallelization or vectorization"
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Profiling	



  is used top determine how much time is spent in which program
 parts"

 Three easy steps:"
 compile the program with the -p option"
 run the program"
 use prof to look at the performance data"

 Alternative using gprof:"
 compile with the -pg option"
 run the program"
 use gprof to look at the performance data"
 includes time spent in called functions"

 See the man pages for details about these programs"

Choice of data structures	



 choose your data structures depending on the use"

 was discussed before and in the exercises:"
 if you need random access use an array"
 if you need to insert in the middle use a list"
 if you need both use a tree"

 use the standard C++ library containers wherever possible. They
 are (nearly) optimal."

  if you need a container not included:"
 design your own in the STL style"
 make it available to others"
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Example: the best data structure for the Penna model	



 We picked a linked list because removal from the middle of a
 vector is slow"

 However a vector might be faster:"
 We do not care about the order of the animals"
 We can implement a special remove_if:"

 Replaces the removed animal with the last one"
 This makes removal fast"

 We can code a container derived from vector with a special
 remove_if"
 Will be faster than a std::list"
 Will require only a one-line change in the Penna code"

 Look at penna_vector.h"

Choice of algorithms	



 Look at the scaling of the algorithms with problem size:"
 Fourier transform"

 Simple: O(N2)"
 Fast Fourier Transform: O(N log N)"

 Matrix-Matrix multiplication"
 Simple: O(N3)"
 Strassen: O(N2.8)"
 Coppersmith and Winograd: O(N2.376)"

 Eigenvalues:"
 all eigenvalues, dense matrix: O(N3)"
 some eigenvalues, dense matrix: O(N2)"
 some eigenvalues, sparse matrix: O(N)"
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The Strassen algorithm	



  is one example why you should use libraries even for trivial-looking
 operations"

 Normal matrix-matrix multiplication is order O(N3)"
 Strassen algorithm is O(Nlog7/log2)=O(N2.8)"

 write matrix as four submatrices"

 use a clever scheme"

C = AB
  

c11 c12

c21 c22

⎛
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⎟

c11 = Q1 +Q4 −Q5 +Q7
c21 =Q2 +Q4

c12 =Q3 +Q5
c22 = Q1 +Q3 −Q2 +Q6

Q1 = a11 + a22( ) b11 + b22( )
Q2 = a21 + a22( )b11
Q3 = a11(b12 − b22)
Q4 = a22(−b11 + b21)
Q5 = a11 + a12( )b22
Q6 = −a11 + a12( ) b11 + b12( )
Q7 = a12 − a22( ) b21 + b22( )

Comparing matrix multiplication algorithms	



  Standard algorithm is O(N3)"
 N3 multiplications"
 N2(N-1) additions"

  Strassen algorithm takes"
 7 multiplications of matrices of size N

/2	


 18 additions of matrices of size N/2	



 What is the complexity Tstrassen(N) ?	


 Tstrassen(N) = 7 Tstrassen(N/2) + 18/4 N2	



  Assuming Tstrassen(N) > O(N2)	


 O(Tstrassen(N)) = 7 O(Tstrassen(N/2))	


 O(Tstrassen(2N)) = 7 O(Tstrassen(N))	


 => Tstrassen(N) = O(Nlog7/log2)	
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How do we find the best algorithm?	



 Look in books of Knuth"

 Search the SIAM journals"

 Do not trust the Numerical Recipes too much"

 But the easiest solution is: use a library"
 bug free (less buggy than your codes)"
 optimized (probably better than you can do)"
 well documented (do you ever document your codes?)"
 supported on most architectures "

 A huge collection is available on netlib at http://www.netlib.org/"
  In the next weeks we will introduce a variety of useful libraries"

How to optimize	



   Generally you should use a library instead of optimizing yourself. "

 But as computational scientists you will sometimes"
 have to write libraries"
 enter new research fields and algorithms where there is no library"

 We will learn how to optimize"
 Optimization using assembly language"
 Classical optimization techniques for any language"
 Optimization in C++"

 And look at libraries using these optimization techniques"
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Optimization in assembly language	



 Sometimes the CPU possesses machine language instructions that
 cannot be used directly from a high level language"
 Bit counts"
 Vector instructions (discussed in “Numerisches Paralleles Rechnen”)"

 MMX and SSE on Pentium"
 Altivec on PowerPC"

 Assembly languages instructions can be mixed with C++"
 Advantage: can speed up code"
 Disadvantage: code becomes non-portable"
 useful only in very rare cases, but can potentially make a big difference"

 Best approach"
 Encapsulate assembly language call in a library"

Example: counting leading zeroes in an integer	



 Problem: count the number of leading zeroes in a 32-bit integer"
 Can be used to get the position of the highest bit set"
 Can be used to calculates the logarithm base 2 of an integer"

 Solution in C++: requires a loop"
 int count_leading_zeroes(int x) {  

  for (int i = 0 ; i<32 ;++i)  
    if (x&(1<<(31-i)))  
      return i;  
  return 32;  
}"

 Solution in PowerPC-assembler: (powerpc_asm.C)"
 inline int count_leading_zeros (int x) {   

  int c;   
  asm ("cntlzw %1,%0" : "=r" (c) : "r" (x) );   
  return c;  
}"
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Inline assembly statements	



 We used an inline assembly statement, which mixes assembly language
 with C++:"
  asm ("cntlzw %1,%0" : "=r" (c) : "r" (x) );"

  Explaining the syntax:"
 asm(…): inserts an inline assembly language statement"
 cntlzw r9,r15 : puts the number of leading zeroes in register 9 into

 register 15"
 cntlzw %1, %0 : we do not know which register the compiler will use and

 thus use placeholders %0 and %1 (use %2 … if more registers  are needed)"
 : “=r” (c) : puts the variable c into the register marked by %0 (and after

 the execution assigns the value of the register %0 to c"
 : “r” (x): : The second : marks the input variables that will not be

 modified. This statement tells the compiler to load variable x into register %1 "

  To learn more, search the webs to find processor-specific instructions"
 But be warned that it is tricky "

Another example: long integers	



 How is 64-bit addition implemented on a 32-bit machine?"

 Just as you learned adding numbers in primary school:"
 Add the low words and remember the carry"
 Add the high words and the carry"

 Example: add64.C"
 g++ -c -save-temps -O add64.C"
 Look at add64.s"

 Compare to a 64-bit machine"
 Addition done in one step!"
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128 bit integers in int128.C	



  If we need 128 bit integers we need to define a new class:"
 Build a 128 bit integer from two 64 bit ones: 

struct int128 {  
  unsigned long long low;  
  long long high;  
};"

  How do we add them?"
 Adding low and high words separately will not be correct since the carry is not

 used  
int128 operator+(int128 x, int128 y) {  
  int128 result;  
  result.low=x.low+y.low;  
  result.high=x.high+y.high;  
  // wrong result: this does not use carry of previous addition 
  return result;  
}"

  Inline assembly language can be used to change “add without carry” to “add
 with carry”"

Helping the compiler optimize	



 Using an optimizing compiler is easier than writing fast code in
 assembly language"

 We will now discuss techniques to optimize code. "

 Some can be done by the compiler "
 You need to know about them to realize which optimizations you do

 not need to perform"
 Not optimizing manually what the compiler can do for you can help

 keep the code cleaner "

 Some have to be done by you"
 But only after you have determined by profiling that which function is

 the bottleneck "
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Copy propagation (automatic)	



  is usually done by any modern compiler and need not be done by
 you."

  It changes 

x = y;  
z = 1 + x;  

  to"

x = y;  
z = 1 + y;  

 and allows pipelining of the two statements"

Constant folding (automatic)	



  Is also done by modern compilers and need not be done by you."

  It changes 

const int x = 100;  
int z = 2*x;  

  to"

const int x = 100;  
int z = 200;  

 And performs the multiplication at compile-time"
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Dead code removal (automatic)	



  Is most useful in connection with template parameters. The
 compiler can detect if a statement is never executed"

  It changes 

int n = 100;  
if (n<1)  
  std::cerr << “n less than one”;  
…  

  to"

"int n = 100;  
…"

  thus removing the code that will never be executed"

Strength reduction (automatic)	



  The compiler often realizes how to simplify expressions, making them
 faster"

  It changes 

x = 2 * y;  

  to"

x = y + y;  

  or (for integer y) 

  x= ( y << 1 );  

  And performs the faster operation"
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Variable renaming (automatic)	



  Is also often done by the compiler to expose potentials for
 pipelining"

  It changes 

int x = y * z;  
int q = r + x * x;  
    x = a + b;  

  to"

int x0 = y * z;  
int q = r + x0 * x0;  
int x = a + b;  

 And can now pipeline the last two statements"

Common subexpression elimination (automatic)	



 Can be done by the compiler in simple cases:"

  It changes 

d = c * (a + b);  
e = (a + b) / 2;  

  to"

  temp = (a + b);  
d = c * temp  
e = temp / 2;  

 And saves one addition"
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Common subexpression elimination (manual)	



  If a function call is involved you have to perform common subexpression
 elimination manually!"

  You have to manually change  

d = c * f(x);  
e = f(x) / 2;  

  to"

  temp = f(x);  
d = c * temp  
e = temp / 2;  

  Since the compiler does not know whether f(x) is always the same
 number"
 maybe f is your name for a random number generator …."

Loop invariant code motion (automatic)	



  Scientific programs spend most of their time in loops. We have to
 minimize the work done in those loops. A compiler can help in simple
 loops:"

  It changes 

for (int i=0; i<n; ++i) {  
  a[i] = b[i] + c * d;  
  e = g[k];  
}  

  to"

  temp = c * d;"
  for (int i=0; i<n; ++i) {  

  a[i] = b[i] + temp;  
}  
e = g[k];"
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Loop invariant code motion (manual)	



  In complex loops or I function calls are involved, we have to manually
 optimize"

 We have to manually change  

for (int i=0; i<n; ++i) {  
  a[i] = b[i] + f(x);  
  e = g(y);  
}  

  to"

  temp = f(x);"
  for (int i=0; i<n; ++i) {  

  a[i] = b[i] + temp;  
}  
e = g(y);"

Induction Variable Simplification (automatic / manual)	



  Induction variable simplification  is changing  

for (int i=0; i<n; ++i) {  
  k =  4*i + m;  
  …  
}  

  to"

  k = m;"
  for (int i=0; i<n; ++i) {  

  …  
  k += 4;  
}  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Importance of Induction Variable Simplification	



  Take care of hidden complexities in array subscripts: the code  

for (int i=0; i<n; ++i) {  
  x[4*i] = …  
 }  

  Is actually"

  for (int i=0; i<n; ++i) {  
  *(x+4*i) = …  
}  

  And is faster coded as"

  for (T* p=x; p<x+4*n; p+=4) {  
  *p = …  
}  

Loop unrolling (automatic / manual)	



 The loop for a scalar product"

  double s=0.;"
  for (int i=0; i<3; ++i)  

  s += x[i] * y[i];  

  Is much faster when unrolled as"

  double s = x[0] * y[0] + x[1] * y[1] + x[2] * y[2];  

  For two reasons:"
 No loop control statements"
 Easy pipelining"

  Simple loops can be unrolled by compilers with high enough optimization
 settings (-funroll-loops on gcc)"
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Partial loop unrolling (automatic / manual)	



 The loop for an array product"

  for (int i=0; i<N; ++i)  
  a[i] = b[i] * c[i];  

  Is much faster when partially unrolled as (for N a multiple of 4)"

 for (int i=0; i<N; i+=4) {  
 a[i]   = b[i]   * c[i];  
 a[i+1] = b[i+1] * c[i+1];  
 a[i+2] = b[i+2] * c[i+2];  
 a[i+3] = b[i+3] * c[i+3];  
}"

  Because pipelining can again be used"

Aiming for unit stride (manual)	



 The loop for a matrix sum"

  for (int i=0; i<N; ++i)   
  for (int j=0; j<N; ++j)  
    a[i][j] = b[i][j] + c[i][j];"

  Is much faster than"

  for (int i=0; i<N; ++i)   
  for (int j=0; j<N; ++j)  
    a[j][i] = b[j][i] + c[j][i];"

 Because the unit stride (sequential memory access) in the inner
 loop uses the cache much better"
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In-cache matrix-matrix multiplications	



 The matrix multiplication"

for (int i=0; i<N; ++i)   
  for (int j=0; j<N; ++j)  
    for (int k=0; k<N; ++k)  
      a[i][j] += b[i][k] * c[k][j];  

  Is better changed to get unit stride in the inner loop"

for (int i=0; i<N; ++i)  
  for (int k=0; k<N; ++k) {  
    temp = b[i][k];  
    for (int j=0; j<N; ++j)  
      a[i][j] += temp * c[k][j];  
  }"

Out-of-cache matrix multiplications: blocking	



 Performance degrades if the matrix does not fit into the cache"

 Split the matrix into smaller blocks and perform in-cache
 multiplications of the blocks:"

 The size of the blocks aij, bij and cij depends on the types and sizes
 of the caches. "

 This is tricky and we will learn about libraries doing it for you next
 week"

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

c11 c12 c13
c21 c22 c23
c31 c32 c33

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
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Libraries for linear algebra	



 Fortran libraries"
 BLAS"
 LAPACK"

 C++ libraries"
 Blitz++"
 uBlas"
 ITL and IETL"
 POOMA"

 The Fortran libraries are well optimized but difficult to call"
 The C++ libraries are easier to use but not as complete yet"
 Fortran can also be called from C++, as we will do in one of the

 exercises"

Calling Fortran from C++	



 declare the function extern “C”"
 pass all parameters by pointers or reference"
 The naming depends on the machine"

 Fortran FUNC -> C func_ with GNU or Intel compilers"
 Fortran FUNC -> C func with IBM or Cray compilers"

 Program has to be linked with Fortran runtime libraries"

 Take care of:"
 Fortran real is float on most workstations but double on Cray"
 Fortran integer is usually an int"
 Array indices in Fortran usually start from 1"
 Storage order of matrices is reversed"
 Fortran a(i,j) is C a[j-1][i-1]"
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A calling example: DDOT	



 The DDOT function in the BLAS library calculates the scalar (dot)
 product of two double precision vectors:"
 DOUBLE PRECISION FUNCTION DDOT(N,X,INCX,Y,INCY)  

DOUBLE PRECISION X(*),Y(*)  
INTEGER INCX,INCY,N  

 To call DDOT from C++ we need to declare it as:"
 extern “C” double ddot_(int& n, double *x, int& incx,  

                                double *y, int& incy);"

 To link we need to add the following options:"
 On the D-PHYS Linux machines: -lblas -lg2c -lm"
 On MacOS X: -framework vecLib"
 How to find options for other machines will be explained in the

 exercises"

BLAS	



  is short for Basic Linear Algebra Subroutines"
  is a Fortran library"
 BLAS level 1"

 vector operations: addition, dot product, …"
 BLAS level 2"

 matrix-vector operations"
 BLAS level 3"

 matrix-matrix operations"
 use the BLAS wherever possible"

 optimized assembler code versions available on most machines"
 generic Fortran version available on www.netlib.org"

 Homework: if you have a Unix or Linux  machine at home
 download and install BLAS and LAPACK"
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ATLAS	



 We learned in the last weeks that optimizing matrix operations can be
 tricky:"
 For which sizes should we use Strassenʼs algorithm?"
 How large should we choose sub-blocks to be get optimal cache effects by

 blocking?"

  The Fortran BLAS on netlib works on all machines and thus cannot be
 optimized to the CPU, cache size and cache type of your machine"

 On supercomputers the vendors provide a hand-optimized BLAS"

  ATLAS is the solution for the rest of us:"
 A self-tuning library"
 When being installed it benchmarks hundreds of blocking strategies until it

 finds the optimal one for your machine"
  It then compiles a BLAS with these optimal settings"

ATLAS benchmark example 1	
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ATLAS benchmark example 2	



LAPACK Overview	



  is a Linear Algebra PACKage"
 ScaLAPACK is the parallel version"
 has functions for"

 eigenvalues and -vectors"
 linear equation solvers"
 matrix inversions"
 determinants"
 ..."

 special functions for"
 symmetric or Hermitian matrices"
 tridiagonal matrices"
 banded matrices"
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LAPACK & BLAS naming conventions	



  functions are of the form"
 PTTXXX"

 where P is the precision"
 S single precision real"
 D double precision real"
 C single precision complex"
 Z double precision complex"

 TT is the matrix type:"
 GE general,"
 SY symmetric"
 HE Hermitian"
 ..."

 Example: DGEEV is the double precision general eigensolver"

Important LAPACK functions	



 Eigensolvers: ***EV  for"
 we will use DSYEV or SSYEV for the exercises"

 Linear equation solvers: ***SV"

 Linear least squares: ***LS"

 Factorizations:"
 LQ: ***LQF"
 QL: ***QLF"

 Matrix inverse: ***TRI"
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 The fastest open source Fourier transfrom library is the self-tuning
 FFTW (“Fastest Fourier Transform in the West”) "

 Available from http://www.fftw.org/ "

Commercial libraries: NAG, IMSL, …	



 add many more functions, like:"
 optimizations"
 non-linear root solvers"
 interpolation"
 statistical functions"
 …"

 They are however not free but commercial libraries"
 cost a lot of money"
 not suitable for private use"
 ETH has a site license: you can us them in your research"


