
Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 1	



An Introduction to C++ 	



Part 1 

A review of basic C and C++ 

Why C++? 	

	



 Generic high level programming"
 Shorter development times"
 Smaller error rate"
 Easier debugging"
 Better software reuse  

 Efficiency"
 As fast or faster then FORTRAN"
 Faster than C, Pascal, … 

 Job skills"
 We all need to find a job some day..."



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 2	



Generic programming	



 Print a sorted list of all words used by Shakespeare 

#include <iostream> 
#include <algorithm> 
#include <vector> 
#include <string> 
#include <iterator> 

using namespace std; 

int main() 
 { 
vector<string> data; 
copy(istream_iterator<string>(cin),istream_iterator<string>(),back_inserter(data)); 
sort(data.begin(), data.end()); 
unique_copy(data.begin(), data.end(),ostream_iterator<string>(cout,"\n")); 
}"

Efficiency	



 Using efficient C++ techniques"
 Templates"
 Expression templates"
 Template meta programs"
 “light objects” and inlining  

 Achieve performance"
 As fast as FORTRAN in normal codes"
 Faster than FORTRAN in some cases"
 See http://www.oonumerics.org/blitz/benchmarks/"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 3	



Why C++?	



C++ C Java FORTRAN FORTRAN
95

Efficiency √√ √ × √√ √

Modular Programming √ √ √ × √

Object Oriented
Programming

√ × √ × √

Generic Programming √ × × × ×

A first C++ program	



/* A first program */"

#include <iostream>  

using namespace std;"

int main() "
{"
  cout << “Hello students!\n”;"
  // std::cout without the using declaration"
  return 0; ""
}"

  /* and */ are the delimiters for
 comments"

  includes declarations of I/O
 streams"

  declares that we want to use the
 standard library (“std”)"

  the main program is always
 called “main”"

  “cout” is the standard output
 stream."

  “<<“ is the operator to write to a
 stream"

  statements end with a ;"
  // starts one-line comments"
  A return value of 0 means that

 everything went OK"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 4	



Getting the source by CVS: ETH D-PHYS machines	



  Create a directory for your sources, e.g."

mkdir Lecture"
cd Lecture"

  Check out the sources for this week"

export CVSROOT=/home/troyer/PT/AS08"
cvs checkout PT"
cd PT/week2"

  Compile the program"

g++ -o hello hello.C"

  Run the program"
./hello"

Getting the source by CVS: your own machine with bash	



  Create a directory for your sources, e.g."

mkdir Lecture"
cd Lecture"

  Check out the sources for this week"

export CVSROOT=:ext:yourname@paris.ethz.ch:/home/troyer/PT/AS08"
export CVS_RSH=ssh"
cvs checkout PT"
cd PT/week2"

  Compile the program"

c++ -o hello hello.C"

  Run the program"
./hello"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 5	



Getting the source by CVS: your own machine with tcsh	



  Create a directory for your sources, e.g."

mkdir Lecture"
cd Lecture"

  Check out the sources for this week"

setenv CVSROOT :ext:yourname@paris.ethz.ch:/home/troyer/PT/AS08"
setenv CVS_RSH ssh"
cvs checkout PT"
cd PT/week2"

  Compile the program"

c++ -o hello hello.C"

  Run the program"
./hello"

More about namespaces	



#include <iostream>"
using namespace std;"
int main() "
{"
  cout << “Hello\n”;"
}"

#include <iostream>"
int main() "
{"
  std::cout << “Hello\n”;"
}"

#include <iostream>"
using std::cout;"
int main() "
{"
  cout << “Hello\n”;"
}"

  All these versions are equivalent"

  Feel free to use any style in your
 program"

  Do not use using statements in
 libraries though"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 6	



A first calculation	



#include <iostream>"
#include <cmath>"

using namespace std;"

int main() "
{"
 cout << “The square root of 5 is”"
 << sqrt(5.) << “\n”;"
 return 0; ""
}"

  <cmath> is the header for
 mathematical functions 

 Output can be connected by <<"

  Expressions can be used in
 output statements 

 What are these constants?"
 5."
 0"
 “\n”  

Integral data types	



 Signed data types"
 short, int, long, long long"
 Not yet standard: int8_t, int16_t, int32_t, int64_t"

 Unsigned data types"
 unsigned short, unsigned int,  
unsigned long, unsigned long long"

 Not yet standard:  uint8_t, uint16_t, uint32_t, uint64_t"

 Are stored as binary numbers"
 short: usually 16 bit"
 int: usually 32 bit"
 long: usually 32 bit on 32-bit CPUs and 64 bit on 64-bit CPUs"
 long long: usually 64 bits"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 7	



 An n-bit integer is stored in n/8 bytes"
 Little-endian: least significant byte first"
 Big-endian: most significant byte first"
 Exercise: write a program to check the format of your CPU"

 Unsigned"
 x just stored as n bits, values from 0 … 2n-1"

 Signed"
 Stored as 2ʼs complement, values from -2n-1 … 2n-1-1"
 Highest bit is sign S"
 x ≥ 0 : S=0, rest  is x!
 x < 0 : S=1, rest is ~(-x -1)"
 Advantage of this format: signed numbers can be added like unsigned"

Integer representations	



S	

 n-1 bits mantissa x	



n bits mantissa x	



Integer constants	



  Integer literals can be entered in a natural way"

 Suffixes specify type (if needed)"
 int: 0, -3, …."
 unsigned int: 3u, 7U ,..."
 short: 0S, -5s, ..."
 unsigned short: 1us, 9su, 6US, ..."
 long: 0L, -5l, ..."
 unsigned long: 1ul, 9Lu, 6Ul, ..."
 long long: 0LL, -5ll, ..."
 unsigned long long: 1ull, 9LLu, 6Ull, ..."



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 8	



Characters	



 Character types"
 Single byte: char, unsigned char, signed char"

 Uses ASCII standard"
 Multi-byte (e.g. for Japanese: 大): wchar_t"

 Unfortunately is not required to use Unicode standard"

 Character literals"
 ‘a’, ‘b’, ‘c’, ‘1’, ‘2’, …"
 ‘\t’ … tabulator"
 ‘\n’ … new line"
 ‘\r’ … line feed"
 ‘\0’ … byte value 0"

Strings	



 String type"
 C-style character arrays char s[100] should be avoided"
 C++ class std::string for single-byte character strings"
 C++ class std::wstring for multi-byte character strings"

 String literals"
 “Hello”"
 Contain a trailing ʻ\0ʼ, thus sizeof(“Hello”)==6"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 9	



Boolean (logical) type	



 Type "
 bool"

 Literal "
 true"
 false"

Floating point numbers	



 Floating point types"
 single precision: float "

 usually 32 bit"
 double precision: double"

 Usually 64 bit"
 extended precision: long double"

 Often 64 bit (PowePC), 80 bit (Pentium) or 128 bit (Cray)"

 Literals"
 single precision: 4.562f, 3.0F"
 double precision: 3.1415927, 0."
 extended precision: 6.54498467494849849489L"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 10	



IEEE floating point representation	



 The 32 (64) bits are divided into sign, exponent and mantissa"

Type" Exponent" Mantissa" Smallest" Largest" Base 10
 accuracy"

float" 8" 23" 1.2E-38" 3.4E+38" 6-9"

double" 11" 52" 2.2E-308" 1.8E+308" 15-17"

Converting to/from IEEE representation	



 Sign"
 Positive: 0,      Negative: 1"

 Mantissa"
 Left shifted until leftmost digit is 1, other digits are stored"

 Exponent"
 Half of the range (127 for float, 1023 for double) is added"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 11	



Floating point arithmetic	



 Truncation can happen because of finite precision"

 Machine precision e is smallest number such that 1+ e ≠1"
 Exercise: calculate e for float, double and long double on your

 machine"

 Be very careful about roundoff"
 For example: sum numbers starting from smallest to largest"
 See examples provided"

1.00000"
0.0000123"
1.00001"

Implementation-specific properties of numeric types	



  defined in header <limits>"
  numeric_limits<T>::is_specialized // is true if information available"
  most important values for integral types"

  numeric_limits<T>::min() // minimum (largest negative)"
  numeric_limits<T>::max() // maximum"
  numeric_limits<T>::digits // number of bits ( digits base 2)"
  numeric_limits<T>::digits10 // number of decimal digits "
  and more: is_signed, is_integer, is_exact, ..."

  most important values for floating point types"
  numeric_limits<T>::min() // minimum (smallest nonzero positive)"
  numeric_limits<T>::max() // maximum"
  numeric_limits<T>::digits // number of bits ( digits base 2)"
  numeric_limits<T>::digits10 // number of decimal digits "
  numeric_limits<T>::epsilon() // the floating point precision"
  and more: min_exponent, max_exponent, min_exponent10, max_exponent10,

 is_integer, is_exact"
  first example of templates, use by replacing T above by the desired type:

 std::numeric_limits<double>::epsilon()"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 12	



A more useful program	



#include <iostream>"
#include <cmath>"
using namespace std;"
int main() "
{"
  cout << “Enter a number:\n”;"
  double x;"
  cin >> x;"
  cout << “The square root of “

 << x << “ is ”"
  << sqrt(x) << “\n”;"
  return 0; ""
}"

  a variable named ʻxʼ of type
 ʻdoubleʼ is declared"

  a double value is read and
 assigned to x"

  The square root is printed"

Variable declarations	



 have the syntax: type variablelist;"
 double x;"
 int i,j,k; // multiple variables possible"
 bool flag;"

 can appear anywhere in the program"
int main() {"
…"
double x;"
}"

 can have initializers, can be constants"
 int i=0; // C-style initializer"
 double r(2.5); // C++-style constructor"
 const double pi=3.1415927; "



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 13	



Advanced types	



 Enumerators are integer which take values only from a certain set"
enum trafficlight {red=17, orange, green};"
enum occupation {empty=0, up=1, down=2, updown=3};"
trafficlight light=green;"

 Arrays of size n"
int i[10]; double vec[100]; float matrix[10][10];"
 indices run from 0 … n-1! (FORTRAN: 1…n)"
 last index changes fastest (opposite to FORTRAN)"
 Should not be used in C++ anymore!!!"

 Complex types can be given a new name"
typedef double[10] vector10;"
vector10 v={0,1,4,9,16,25,36,49,64,81};"
vector10 mat[10]; // actually a matrix!"

Expressions and operators	



  Arithmetic"
 multiplication: a * b"
 division: a / b"
  remainder: a % b"
 addition: a + b"
 subtraction: a - b"
 negation: -a  

  Increment and decrement"
 pre-increment: ++a"
 post-increment: a++"
 pre-decrement: --a"
 post-decrement: a--  

  Logical (result bool)"
  logical not: !a"
  less than: a < b"
  less than or equal: a <= b"
 greater than: a > b"
 greater than or equal: a >= b"
 equality: a == b"
  inequality: a != b"
  logical and: a && b"
  logical or: a || b"

  Conditional:  a ? b : c"
  Assignment: a = b"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 14	



¨  The shift operators have been
 redefined for I/O streams:"
¨  cin >> x;"
¨  cout << “Hello\n”;  

¨  The same can be done for all
 new types: 
“operator overloading”"

¨  Example: matrix operations"
¨  A+B"
¨  A-B"
¨  A*B"

Bitwise operations	



  Bit operations"
 bitwise not: ~a"

  inverts all bits"
  left shift: a << n"

  shifts all bits to higher positions, fills
 with zeros, discards highest"

  right shift: a >> n"
  shifts to lower positions"

 bitwise and: a & b"
 bitwise xor: a ^ b"
 bitwise or: a | b"

  The bitset class implements
 more functions. We will use it
 later in one of the exercises."

  Interested students should refer
 to the recommended C++ books"

Compound assignments	



  a *= b"
  a /= b"
  a %= b"
  a += b"
  a -= b"
  a <<= b"
  a >>= b"
  a &= b"
  a ^= b"
  a |= b"

  a += b equivalent to a=a+b  

  allow for simpler codes and better
 optimizations"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 15	



Special operators	



  scope operators: ::"
 member selectors"

 ."
 ->"

  subscript []"
  function call ()"
  construction ()"
  typeid"
  casts"

 const_cast"
 dynamic_cast"
 reinterpret_cast"
 static_cast"

  sizeof"
  new"
  delete"
  delete[]"
  pointer to member select"

 .*"
 ->*"

  throw"
  comma ,  

  all these will be discussed later"

Operator precedences	



 Are listed in detail in all reference books or look at 
http://www.cppreference.com/operator_precedence.html "

 Arithmetic operators follow usual rules"
 a+b*c is the same as a+(b*c)"

 Otherwise, when in doubt use parentheses!



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 16	



Statements	



 simple statements"

 ; // null statement"
 int x; // declaration statement"
 typedef int index_type; // type definition"
 cout << “Hello world”; // all simple statements end with ;"

 compound statements"
 more than one statement, enclosed in curly braces"
"{"

 " "int x;"
" cin >> x;"
   cout << x*x;"
  }"

The if statement	



  Has the form"
if (condition)"
  statement"

  or"
if (condition)"
  statement"
else"
  statement"

  can be chained"
if (condition)"
  statement"
else if(condition)"
  statement!
else"
  statement!

  Example:"
if (light == red) "
  cout << “STOP!”;"
else if (light == orange) "
  cout << “Attention”;"
else {"
  cout << “Go!”;"
}"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 17	



The switch statement	



  can be used instead of deeply
 nested if statements:"
switch (light) {  

  case red:  
"  cout << “STOP!”;  
"  break;  
  case orange:  
"  cout << “Attention”;  
"  break;  
  case green:  
   cout << “Go!”;  
"  go();  
"  break;  
  default:  
   cerr << “illegal color”;  
"  abort();  
}"

  do not forget the break!"
  always include a default!"

  the telephone system of the US
 east coast was once disrupted
 completely for several hours
 because of a missing default!"

  also multiple labels possible:"
switch(ch) {  

  case ‘a’:  
  case ‘e’:  
  case ‘i’:  
  case ‘o’:  
  case ‘u’:  
   cout << “vowel”;"

  default:  
   cout << “other character”;  
}"

The for loop statement	



 has the form 
for (init-statement ; condition ; expression)  

"statement!

 example:"
 for (int i=0;i<10;++i)  

"cout << i << “\n”;"

 can contain more than one statement in for(;;), but this is very bad
 style!"
 double fac;  
int k;  
for (k=1,fac=1 ; k<50 ; ++k, fac*=k)  
  cout << k << “! = “ << fac << “\n”;  



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 18	



The while statement	



  is a simpler form of a loop: 
while (condition)  
  statement  

 example:"
while (trafficlight()==red) { 

    cout << “Still waiting\n”; 
 "  sleep(1); 
} 

The do-while statement	



  is similar to the while statement 
do  
  statement  
while (condition);  

 Example  

do {  
  cout << “Working\n”;  
  work();  
} while (work_to_do());"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 19	



The break and continue statements	



 break ends the loop immediately and jumps to the next statement
 following the loop"

 continue starts the next iteration immediately"
 An example:"

while (true) {"
  if (light()==red)"
    continue;"
  start_engine();"
  if(light()==orange)"
    continue;"
  drive_off();"
  break;"
}"

A loop example: what is wrong?	



"#include <iostream>  
using namespace std;  
int main()  
{  
  cout << “Enter a number: “;  
  unsigned int n;  
  cin >> n;  

  for (int i=1;i<=n;++i)  
    cout << i << "\n";  

  int i=0;  
  while (i<n)  
    cout << ++i << "\n";  

"  i=1;  
  do  
    cout << i++ << "\n";  
  while (i<=n);  

  i=1;  
  while (true) {"

         if(i>n)  
      break;  
    cout << i++ << "\n";  
  }  
}"



Week 1 - Intro to C++	

 9/14/09	



Programming techniques	

 20	



The goto statement	



 will not be discussed as it should not be used  

  included only for machine produced codes, 
 e.g. FORTRAN -> C translators  

 can always be replaced by one of the other control structures 

 we will not allow any goto in the exercises! "


