
Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 1	

Algorithms and Data Structures in C++	

Complexity analysis	

 Answers the question “How does the time needed for an algorithm
scale with the problem size N?”"
♦ Worst case analysis: maximum time needed over all possible inputs"
♦ Best case analysis: minimum time needed"
♦ Average case analysis: average time needed"
♦ Amortized analysis: average over a sequence of operations"

 Usually only worst-case information is given since average case is
much harder to estimate."

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 2	

The O notation	

 Is used for worst case analysis: 

An algorithm is O(f (N)) if there are constants c and N0, such that for
N≥ N0 the time to perform the algorithm for an input size N is
bounded by t(N) < c f(N)���

 Consequences "
♦ O(f(N)) is identically the same as O(a f(N))	

♦ O(a Nx + b Ny) is identically the same as O(Nmax(x,y))"
♦ O(Nx) implies O(Ny) for all y ≥ x	

The Ω and Θ notations	

 Ω is used for best case analysis: 

An algorithm is Ω(f (N)) if there are constants c and N0, such that for
N≥ N0 the time to perform the algorithm for an input size N is
bounded by t(N) > c f(N)���

 Θ is used if worst and best case scale the same  

Data structures and algorithms in the C++ standard
library An algorithm is Θ(f (N)) if it is Ω(f (N)) and O(f (N)) "

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 3	

Time assuming 1 billion operations per second	

Complexity" N=10" 102" 103" 104" 105" 106"

1" 1 ns" 1 ns" 1 ns" 1 ns" 1 ns" 1ns"

ln N" 3 ns" 7 ns" 10 ns" 13 ns" 17 ns" 20 ns"

N" 10 ns" 100 ns" 1 µs" 10 µs" 100 µs" 1 ms"

N log N" 33 ns" 664 ns" 10 µs" 133 µs" 1.7 ms" 20 ms"

N2" 100 ns" 10 µs" 1 ms" 100 ms" 10 s" 17 min"

N3" 1 µs" 1 ms" 1 s" 17 min" 11.5 d" 31 a"

2N" 1 µs" 1014 a" 10285 a" 102996 a" 1030086 a" 10301013 a"

Which algorithm do you prefer?	

 When do you pick algorithm A, when algorithm B? The complexities are
listed below "

Algorithm A" Algorithm B" Which do you pick?"
O(ln N)	

 O(N)	

O(ln N)	

 N	

O(ln N)	

 1000 N	

ln N	

 O(N)	

1000 ln N	

 O(N)	

ln N	

 N	

ln N	

 1000 N	

1000 ln N	

 N	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 4	

Complexity: example 1	

 What is the O, Ω and Θ complexity of the following code?  

double x;  
std::cin >> x;  
std::cout << std::sqrt(x);"

Complexity: example 2	

 What is the O, Ω and Θ complexity of the following code?  

unsigned int n;  
std::cin >> n;  
for (int i=0; i<n; ++i)  
 std::cout << i*i << “\n”;"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 5	

Complexity: example 3	

 What is the O, Ω and Θ complexity of the following code?  

unsigned int n;  
std::cin >> n;  
for (int i=0; i<n; ++i) {  
 unsigned int sum=0;  
 for (int j=0; j<i; ++j)  
 sum += j;  
 std::cout << sum << “\n”;  
}"

Complexity: example 4	

 What is the O, Ω and Θ complexity of the following two segments?"
♦ Part 1: 
unsigned int n;  
std::cin >> n;  
double* x=new double[n]; // allocate array of n numbers 
for (int i=0; i<n; ++i)  
 std::cin >> x[i];  

♦ Part 2: 
double y;  
std::cin >> y;  
for (int i=0; i<n; ++i)  
 if (x[i]==y) {  
 std::cout << i << “\n”;  
 break;  
 }  

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 6	

Complexity: adding to an array (simple way)	

 What is the complexity of adding an element to the end of an
array?"
♦ allocate a new array with N+1 entries"
♦ copy N old entries"
♦ delete old arrray"
♦ write (N+1)-st element"

 The complexity is O(N)"

Complexity: adding to an array (clever way)	

 What is the complexity of adding an element to the end of an
array?"
♦ allocate a new array with 2N entries, but mark only N+1 as used"
♦ copy N old entries"
♦ delete old arrray"
♦ write (N+1)-st element"

 The complexity is O(N), but letʼs look at the next elements added:"
♦ mark one more element as used"
♦ write additional element"

 The complexity here is O(1)"
 The amortized (averaged) complexity for N elements added is"

�

1
N

O(N) + (N −1)O(1)() = O(1)

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 7	

STL: Standard Template Library	

 Most notable example of generic programming"
 Widely used in practice"
 Theory: Stepanov, Musser; Implementation: Stepanov, Lee"

 Standard Template Library"
♦ Proposed to the ANSI/ISO C++ Standards Committee in 1994."
♦ After small revisions, part of the official C++ standard in 1997."

sequence algorithms	

accumulate, inner_product,	

find, reverse, …	

sort, merge, …	

your algorithm	

data sequences	

builtin arrays,	

iostreams,	

your data structure	

function objects	

negate, plus, multiplies, … 	

your function	

predicates	

less, greater, equal_to, …	

your predicate	

allocators	

allocator	

your allocator	

containers	

list, vector, deque	

map, set, …	

your container	

container adapters	

stack, queue, priority_queue	

The standard C++ library	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 8	

The string and wstring classes	

 are very useful class to manipulate strings"
♦ string for standard ASCII strings (e.g. “English”)"
♦ wstring for wide character strings (e.g. “日本語”)"

 Contains many useful functions for string manipulation"
♦ Adding strings"
♦ Counting and searching of characters"
♦ Finding substrings"
♦ Erasing substrings"
♦ …"

 Since this is not very important for numerical simulations I will not
go into details. Please read your C++ book"

The pair template	

 template <class T1, class T2> class pair {  
public:  
 T1 first;  
 T2 second;  
 pair(const T1& f, const T2& s)  
 : first(f), second(s)  
 {}  
};  

 will be useful in a number of places"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 9	

Data structures in C++	

 We will discuss a number of data structures and their implementation
in C++:"

 Arrays: "

♦ C array"
♦ vector"
♦ valarray"
♦ deque"

 Linked lists: "

♦ list"

 Trees"

♦ map"
♦ set"
♦ multimap"
♦ multiset"

 Queues and stacks"

♦ queue"
♦ priority_queue"
♦ stack"

 An array/vector is a consecutive range in memory"

 Advantages"
♦ Fast O(1) access to arbitrary elements: a[i] is *(a+i)"
♦ Profits from cache effects"
♦ Insertion or removal at the end is O(1)"
♦ Searching in a sorted array is O(ln N)"

 Disadvantage"
♦ Insertion and removal at arbitrary positions is O(N)"

The array or vector data structure	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 10	

 Inserting an element"
♦ Need to copy O(N) elements"

 Removing an element"
♦ Also need to copy O(N) elements"

Slow O(N) insertion and removal in an array	

a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	

a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	

x	

a	

 b	

 c	

 e	

 f	

 g	

 h	

a	

 b	

 c	

 d	

 e	

 f	

 g	

 h	

 Removing the last element"
♦ Just change the size"

♦ Capacity 8, size 6:"

♦ Capacity 8, size 5:"

 Inserting elements at the end"
♦ Is amortized O(1)"

♦ first double the size and copy in O(N):"

♦ then just change the size:"

Fast O(1) removal and insertion at the end of an array	

a	

 b	

 c	

 d	

 e	

 f	

a	

 b	

 c	

 d	

a	

 b	

 c	

 d	

 e	

spare 	

elements	

a	

 b	

 c	

 d	

 e	

a	

 b	

 c	

 d	

 e	

 f	

a	

 b	

 c	

 d	

 e	

 f	

 g	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 11	

The deque data structure (double ended queue)	

 Is a variant of an array, more complicated to implement"
♦ See a data structures book for details"

 In addition to the array operations also the insertion and removal at
beginning is O(1)	

 Is needed to implement queues"

The stack data structure	

 Is like a pile of books"
♦ LIFO (last in first out): the last one in is the first one out"

 Allows in O(1)"
♦ Pushing an element to the top of the stack"
♦ Accessing the top-most element"
♦ Removing the top-most element" in	

 out	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 12	

The queue data structure	

 Is like a queue in the Mensa"
♦ FIFO (first in first out): the first one in is the first one out"

 Allows in O(1)"
♦ Pushing an element to the end of the queue"
♦ Accessing the first and last element"
♦ Removing the first element"

in	

out	

The priority queue data structure	

 Is like a queue in the Mensa, but professors are allowed to go to
the head of the queue (not passing other professors though)"

♦ The element with highest priority (as given by the < relation) is the first
one out"

♦ If there are elements with equal priority, the first one in the queue is
the first one out"

 There are a number of possible implementations, look at a data
structure book for details"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 13	

 An linked list is a collection of objects linked by pointers into a one-
dimensional sequence"

 Advantages"
♦ Fast O(1) insertion and removal anywhere"

♦ Just reconnect the pointers"

 Disadvantage"
♦ Does not profit from cache effects"
♦ Access to an arbitrary element is O(N)"
♦ Searching in a list is O(N)"

The linked list data structure	

head	

 tail	

The tree data structures	

 An array needs"
♦ O(N) operations for arbitrary insertions and removals"
♦ O(1) operations for random access"
♦ O(N) operations for searches"
♦ O(ln N) operations for searches in a sorted array"

 A list needs"
♦ O(1) operations for arbitrary insertions and removals"
♦ O(N) operations for random access and searches"

 What if both need to be fast? Use a tree data structure:"
♦ O(ln N) operations for arbitrary insertions and removals"
♦ O(ln N) operations for random access and searches"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 14	

A node in a binary tree	

 Each node is always linked to two child nodes"
♦ The left child is always smaller"
♦ The right child node is always larger"

m	

d	

 s	

A binary tree	

 Can store N=2n-1 nodes in a tree of height n!
♦ Any access needs at most n = O(ln N) steps!

 Example: a tree of height 5 with 12 nodes"

m	

d	

 s	

b	

 g	

 n	

 x	

a	

 i	

 w	

 y	

z	

root	

leaf	

branch	

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 15	

 Trees can become unbalanced"
♦ Height is no longer O(ln N) but O(N)"
♦ All operations become O(N)"

 Solutions"
♦ Rebalance the tree"
♦ Use self-balancing trees"

 Look into a data structures book to learn more"

Unbalanced trees	

a	

b	

c	

d	

e	

f	

g	

h	

Tree data structures in the C++ standard	

 Fortunately the C++ standard contains a number of self-balancing
tree data structures suitable for most purposes:"
♦ set"
♦ multiset"
♦ map"
♦ multimap"

 But be aware that computer scientists know a large number of
other types of trees and data structures"
♦ Read the books"
♦ Ask the experts"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 16	

The container concept in the C++ standard	

 Containers are sequences of data, in any of the data structures"

♦ vector<T> is an array of elements of type T"
♦ list<T> is a doubly linked list of elements of type T"
♦ set<T> is a tree of elements of type T 

…"

 The standard assumes the following requirements for the element
T of a container:"
♦ default constructor T()"
♦ assignment T& operator=(const T&)"
♦ copy constructor T(const T&)"
♦ Note once again that assignment and copy have to produce identical

copy: in the Penna model the copy constructor should not mutate!"

find(s, x) :="
! pos  start of s"
" while pos not at end of s"
" " if element at pos in s == x!
" " " return pos!
! ! pos  next position!
" return pos"

Connecting Algorithms to Sequences	

struct node"
{"
" char value;"
" node* next;"
};"

node* find(node* const s, char x)"
{"
" node* pos = s;"
" while (pos != 0)"
" {"
" " if (pos->value == x)"
" " " return pos;!
! ! pos = pos->next;!
" }"
" return pos;"
}"

int find(char const(&s)[4], char x)"
{"
 int pos = 0;"
 while (pos != sizeof(s))"
 {"
 if (s[pos] == x)"
 return pos;"
 ++pos;"
 }"
 return pos;"
}"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 17	

char* find(char const(&s)[4], char x)"
{"
" char* pos = s;"
" while (pos != s + sizeof(s))"
" {"
" " if (*pos == x)"
" " " return pos;"
" " ++pos;"
" }"
" return pos;"
}"

find(s, x) :="
! pos  start of s"
" while pos not at end of s"
" " if element at pos in s == x!
" " " return pos!
! ! pos  next position!
" return pos"

Connecting Algorithms to Sequences	

struct node"
{"
" char value;"
" node* next;"
};"

node* find(node* const s, char x)"
{"
" node* pos = s;"
" while (pos != 0)"
" {"
" " if (pos->value == x)"
" " " return pos;!
! ! pos = pos->next;!
" }"
" return pos;"
}"

char* find(char const(&s)[4], char x)"
{"
" char* pos = s;"
" while (pos != s + sizeof(s))"
" {"
" " if (*pos == x)"
" " " return pos;"
" " ++pos;"
" }"
" return pos;"
}"

find(s, x) :="
! pos  start of s"
" while pos not at end of s"
" " if element at pos in s == x!
" " " return pos!
! ! pos  next position!
" return pos"

Connecting Algorithms to Sequences	

struct node"
{"
" char value;"
" node* next;"
};"

node* find(node* const s, char x)"
{"
" node* pos = s;"
" while (pos != 0)"
" {"
" " if (pos->value == x)"
" " " return pos;!
! ! pos = pos->next;!
" }"
" return pos;"
}"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 18	

NxM Algorithm Implementations?	

1.  find"
2.  copy"
3.  merge"
4.  transform"" " " ."" " " ."" " " ."
N." accumulate"

1.  vector"
2.  list"
3.  deque"
4.  set"
5. map"
6.  char[5]"" " ."" " ."" " ."
M." foobar"

F. T. S. E.	

Fundamental Theorem of Software Engineering

" " "We can solve any problem by introducing an extra
level of indirection"!

! !
! ! ! --Butler Lampson!
! "

Andrew Koenig

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 19	

Iterators to the Rescue	

 Define a common interface for"
♦ traversal"
♦ access"
♦ positional comparison"

 Containers provide iterators"
 Algorithms operate on pairs of iterators"

template <class Iter, class T>	

Iter find(Iter start, Iter finish, T x)	

{	

 Iter pos = start;	

 for (; pos != end; ++pos)	

 {	

 if (*pos == x)	

 return pos;	

 }	

 return pos;	

}	

struct node_iterator	

{	

 // ...	

 char& operator*() const	

 { return n->value; }	

 node_iterator& operator++()	

 { n = n->next; return *this; }	

private:	

 node* n;	

};	

Describe Concepts for std::find	

template <class Iter, class T>"
Iter find(Iter start, Iter finish, T x)"
{"
" Iter pos = start;"
" for (; pos != finish; ++pos)"
" {"
" " if (*pos == x)"
" " " return pos;!
" }"
" return pos;"
}"

 Concept Name?"
 Valid expressions? "
 Preconditions?"
 Postconditions? "
 Complexity guarantees? "
 Associated types?"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 20	

Traversing an array and a linked list	

 Two ways for traversing an array 

♦ Using an index:"

T* a = new T[size];"
for (int n=0;n<size;++n)"
 cout << a[n];  

♦ Using pointers:"

for (T* p = a;"
 p !=a+size;  

 ++p)  
cout << *p;"

 Traversing a linked list"

template <class T> struct node"
{  

T value; // the element 
node<T>* next; // the next Node"

};"

template<class T> struct list"
{  

node<T>* first;"
};"
list<T> l;"
…"
for (mode<T>* p=l.first;  

 p!=0;  
 p=p->next)  
 cout << p->value;  

Generic traversal 	

 Can we traverse a vector and a
list in the same way?"

  Instead of"
for (T* p = a;"
 p !=a+size;  

 ++p)  
cout << *p;"

 We want to write"

for (iterator p = a.begin();"
 p !=a.end();  

 ++p)  
cout << *p;"

  Instead of"
" for (node<T>* p=l.first;  

 p!=0;  
 p=p->next)  
 cout << p->value;"

 We want to write"

for (iterator p = l.begin();"
 p !=l.end();  

 ++p)  
cout << *p;"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 21	

Implementing iterators for the array	

template<class T>  
class Array {  
public:  
 typedef T* iterator;  
 typedef unsigned size_type;  
 Array();  
 Array(size_type);  

 iterator begin()  
 { return p_;}  
 iterator end()  
 { return p_+sz_;}  

private:  
 T* p_;  
 size_type sz_;  
};"

 Now allows the desired syntax:"

for (Array<T>::iterator p =
a.begin();"

 p !=a.end();  
 ++p)  
cout << *p;"

  Instead of 

for (T* p = a.p_;"
 p !=a.p_+a.sz_;  

 ++p)  
cout << *p;"

Implementing iterators for the linked list	

template <class T>  
struct node_iterator {  
Node<T>* p;  
node_iterator(Node<T>* q) "

 : p(q) {}  

node_iterator<T>& operator++()  
{ p=p->next;}  

T* operator ->()  
{ return &(p->value);}  

T& operator*()  
{ return p->value;}  

bool operator!=(const  
 node_iterator<T>& x)  
{ return p!=x.p;}  

// more operators missing … 
};"

template<class T>  
class list {  
 Node<T>* first;  
public:  
 typedef node_iterator<T> iterator;  

 iterator begin()  
 { return iterator(first);}  

 iterator end()  
 { return iterator(0);}  
};"

♦ Now also allows the desired syntax:"

for (List<T>::iterator p = l.begin();"

 p !=l.end();  
 ++p)  
cout << *p;"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 22	

Iterators	

 have the same functionality as pointers 

 including pointer arithmetic!"
♦ iterator a,b; cout << b-a; // # of elements in [a,b[ 

 exist in several versions"
♦ forward iterators … move forward through sequence"
♦ backward iterators … move backwards through sequence"
♦ bidirectional iterators … can move any direction"
♦ input iterators … can be read: x=*p;"
♦ output iterators … can be written: *p=x;  

 and all these in const versions (except output iterators)"

Container requirements	

 There are a number of requirements on a container that we will
now discuss based on the handouts"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 23	

Containers and sequences	

 A container is a collection of elements in a data structure"

 A sequence is a container with a linear ordering (not a tree)"
♦ vector"
♦ deque"
♦ list"

 An associative container is based on a tree, finds element by a key"
♦ map"
♦ multimap"
♦ set"
♦ multiset"

 The properties are defined on the handouts from the standard"
♦ A few special points mentioned on the slides"

Sequence constructors	

 A sequence is a linear container (vector, deque, list,…)"

 Constructors"
♦ container() … empty container"
♦ container(n) … n elements with default value"
♦ container(n,x) … n elements with value x"
♦ container(c) … copy of container c"
♦ container(first,last) … first and last are iterators"

♦ container with elements from the range [first,last["

 Example:"
♦ std::list<double> l;  

// fill the list 
…  
// copy list to a vector 
std::vector<double> v(l.begin(),l.end());"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 24	

Direct element access in deque and vector	

 Optional element access (not implemented for all containers)"
♦ T& container[k] … k-th element, no range check"
♦ T& container.at(k) … k-th element, with range check"
♦ T& container.front() … first element"
♦ T& container.back() … last element"

Inserting and removing at the beginning and end	

 For all sequences: inserting/removing at end"
♦ container.push_back(T x) // add another element at end"
♦ container.pop_back() // remove last element"

 For list and deque (stack, queue)"
♦ container.push_first(T x) // insert element at start"
♦ container.pop_first() // remove first element"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 25	

Inserting and erasing anywhere in a sequence	

 List operations (slow for vectors, deque etc.!)"
♦ insert (p,x) // insert x before p"
♦ insert(p,n,x) // insert n copies of x before p"
♦ insert(p,first,last) // insert [first,last[before p"
♦ erase(p) // erase element at p"
♦ erase(first,last) // erase range[first,last["
♦ clear() // erase all"

Vector specific operations	

 Changing the size"
♦ void resize(size_type)"
♦ void reserve(size_type)"
♦ size_type capacity()"

 Note:"
♦ reserve and capacity regard memory allocated for vector!"
♦ resize and size regard memory currently used for vector data"

 Assignments"
♦ container = c … copy of container c"
♦ container.assign(n) …assign n elements the default value"
♦ container.assign(n,x) … assign n elements the value x"
♦ container.assign(first,last) … assign values from the range

[first,last["
 Watch out: assignment does not allocate, do a resize before!"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 26	

The valarray template	

 acts like a vector but with additional (mis)features:"
♦ No iterators"
♦ No reserve"
♦ Resize is fast but erases contents"

 for numeric operations are defined: 

std::valarray<double> x(100), y(100), z(100);  
x=y+exp(z);  

♦ Be careful: it is not the fastest library!"
♦ We will learn about faster libraries later"

Sequence adapters: queue and stack	

 are based on deques, but can also use vectors and lists"
♦ stack is first in-last out"
♦ queue is first in-first out"
♦ priority_queue prioritizes with < operator"

 stack functions"
♦ void push(const T& x) … insert at top"
♦ void pop() … removes top"
♦ T& top()"
♦ const T& top() const"

 queue functions"
♦ void push(const T& x) … inserts at end"
♦ void pop() … removes front"
♦ T& front(), T& back(),  
const T& front(), const T& back()"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 27	

list -specific functions	

 The following functions exist only for std::list:"
♦ splice"

♦  joins lists without copying, moves elements from one to end of the other"
♦ sort"

♦ optimized sort, just relinks the list without copying elements"
♦ merge"

♦ preserves order when “splicing” sorted lists"
♦ remove(T x)"
♦ remove_if(criterion)"

♦ criterion is a function object or function, returning a bool and taking a const T& as
argument, see Penna model"

♦ example:"
bool is_negative(const T& x) { return x<0;}"

♦ can be used like"
list.remove_if(is_negative);"

The map class	

 implements associative arrays"
♦ map<std::string,long> phone_book;  
phone_book[“Troyer”] = 32589;  
phone_book[“Heeb”] = 32591;  
if(phone_book[name])  
 cout << “The phone number of “ << name << “ is “  
 << phone_book[name];  
else  
 cout << name << “\’s phone number is unknown!’;"

 is implemented as a tree of pairs"
 Take care:"
♦ map<T1,T2>::value_type is pair<T1,T2>"
♦ map<T1,T2>::key_type is T1"
♦ map<T1,T2>::mapped_type is T2"
♦ insert, remove, … are sometimes at first sight confusing for a map!"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 28	

Other tree-like containers	

 multimap"
♦ can contain more than one entry (e.g. phone number) per key"

 set"
♦ unordered container, each entry occurs only once"

 multiset"
♦ unordered container, multiple entries possible  

 extensions are no problem"
♦ if a data structure is missing, just write your own"
♦ good exercise for understanding of containers"

Search operations in trees	

 In a map<K,V>, K is the key type and V the mapped type"
♦ Attention: iterators point to pairs"

 In a map<T>, T is the key type and also the value_type"

 Fast O(log N) searches are possible in trees:"
♦ a.find(k) returns an iterator pointing to an element with key k or

end() if it is not found."
♦ a.count(k) returns the number of elements with key k."
♦ a.lower_bound(k) returns an iterator pointing to the first element

with key >= k."
♦ a.upper_bound(k) returns an iterator pointing to the first element

with key > k."
♦ a.equal_range(k) is equivalent to but faster than  
std::make_pair(a.lower_bound(k) , a.upper_bound(k))"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 29	

Search example in a tree	

 Look for all my phone numbers:"
♦  // some typedefs 

typedef multimap<std::string, int> phonebook_t;  
typedef phonebook_t::const_iterator IT;  
typedef phonebook_t::value_type value_type;  

// the phonebook  
phonebook_t phonebook;  

// fill the phonebook 
phonebook.insert(value_type(“Troyer”,32589));  
…  

// search all my phone numbers  
pair< IT,IT> range = phonebook.equal_range(“Troyer”);  

// print all my phone numbers  
for (IT it=range.first; it != range.second;++it)  
 cout << it->second << “\n”;  

Almost Containers	

 C-style array"
 string"
 valarray"
 bitset"

 They all provide almost all the functionality of a container"
 They can be used like a container in many instances, but not all"
♦ int x[5] = {3,7,2,9,4};  
vector<int> v(x,x+5); "

♦ uses vector(first,last), pointers are also iterators!"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 30	

The generic algorithms	

 Implement a big number of useful algorithms 

 Can be used on any container"
♦ rely only on existence of iterators"
♦ “container-free algorithms”"
♦ now all the fuss about containers pays off! 

 Very useful  

 Are an excellent example in generic programming  

 We will use them now for the Penna model  
Thatʼs why we did not ask you to code the Population class for the
Penna model yet!"

Example: find	

 	

 A generic function to find an element in a container:"
♦ list<string> fruits;  
list<string>::const_iterator found =  
 find(fruits.begin(),fruits.end(),”apple”);  
if (found==fruits.end()) // end means invalid iterator 
 cout << “No apple in the list”;  
else  
 cout << “Found it: “ << *found << “\n”;"

 find declared and implemented as"
♦ template <class In, class T>  
 In find(In first, In last, T v) {  
 while (first != last && *first != v)  
 ++first;  
 return first;  
 }"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 31	

Example: find_if! 	

 takes predicate (function object or function)"
♦ bool favorite_fruits(const std::string& name)  

{ return (name==“apple” || name == “orange”);}  

 can be used with find_if function:"
♦ list<string>::const_iterator found =  

 find_if(fruits.begin(),fruits.end(),favorite_fruits);  
if (found==fruits.end())  
 cout << “No favorite fruits in the list”;  
else  
 cout << “Found it: “ << *found << “\n”;"

 find_if declared and implemented as as"
♦ template <class In, class Pred>  

 In find_if(In first, In last, Pred p) {  
 while (first != last && !p(*first))  
 ++first;  
 return first;  
}"

Member functions as predicates	

 We want to find the first pregnant animal:"
♦ list<Animal> pop;  
find_if(pop.begin(),pop.end(),is_pregnant)  

 This does not work as expected, it expects"
♦ bool is_pregnant(const Animal&);"

 We want to use "
♦ bool Animal::pregnant() const  

 Solution: mem_fun_ref function adapter"
♦ find_if(pop.begin(),pop.end(),  
 mem_fun_ref(&Animal::pregnant));  

 Many other useful adapters available"
♦ Once again: please read the books before coding your own!"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 32	

push_back and back_inserter	

 Attention:"
♦ vector<int> v,w;  
for (int k=0;k<100;++k){  
 v[k]=k; //error: v is size 0!  
 w.push_back(k); // OK:grows the array and assigns 
}"

 Same problem with copy:"
♦ vector<int> v(100), w(0);  
copy(v.begin(),v.end(),w.begin()); // problem: w of size 0!"

 Solution1: vectors only"
♦ w.resize(v.size()); copy(v.begin(),v.end(),w.begin()); "

 Solution 2: elegant"
♦ copy(v.begin(),v.end(),back_inserter(w)); // uses push_back"

 also push_front and front_inserter for some containers "

Penna Population	

 easiest modeled as "
♦ class Population : public list<Animal> {…}"

 Removing dead:"
♦ remove_if(mem_fun_ref(&Animal::is_dead));"

 Removing dead, and others with probability N/N0:"
♦ remove_if(animal_dies(N/N0));"
♦ where animal_dies is a function object taking N/N0 as parameter"

 Inserting children: "
♦ cannot go into same container, as that might invalidate iterators: 

vector<Animal> children;  
for(const_iterator a=begin();a!=end();++a)  
 if(a->pregnant())  
 children.push_back(a->child());  
copy(children.begin(),children.end(),  
 back_inserter(*this);"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 33	

The binary search	

 Searching using binary search in a sorted vector is O(ln N)	

 Binary search is recursive search in range [begin,end[

♦ If range is empty, return"
♦ Otherwise test middle=begin+(end-begin)/2"

♦ If the element in the middle is the search value, we are done"
♦ If it is larger, search in [begin,middle["
♦ If it is smaller, search in [middle,end[

 The search range is halved in every step and we thus need at most
O(ln N) steps	

Example: lower_bound	

 template<class IT, class T>"
 IT lower_bound(IT first, IT last, const T& val) {"
 typedef typename iterator_traits<IT>::difference_type dist_t;"
 dist_t len = distance(first, last); // generic function for last-first"
 dist_t half; "
 IT middle; "
 while (len > 0) {"
 half = len >> 1; // faster version of half=len/2"
 middle = first;  

 advance(middle, half);// generic function for middle+=half"
 if (*middle < val) {"
 first = middle;  

 ++first;"
 len = len - half - 1;  

 }"
 else  

 len = half;  
}"

 return first; "
 }"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 34	

Algorithms overview	

 Nonmodifying"
♦ for_each"
♦ find, find_if,

find_first_of"
♦ adjacent_find"
♦ count, count_if"
♦ mismatch"
♦ equal"
♦ search"
♦ find_end"
♦ search_n"

 Modifying"
♦ transform"
♦ copy, copy_backward"
♦ swap, iter_swap,

swap_ranges"
♦ replace, replace_if,

replace_copy,
replace_copy_if"

♦ fill, fill_n"
♦ generate, generate_n"
♦ remove, remove_if,

remove_copy,
remove_copy_if"

♦ unique, unique_copy"
♦ reverse, reverse_copy"
♦ rotate, rotate_copy"
♦ random_shuffle"

Algorithms overview (continued)	

 Sorted Sequences"
♦ sort,stable_sort"
♦ partial_sort,

partial_sort_copy"
♦ nth_element"
♦ lower_bound, upper_bound"
♦ equal_range"
♦ binary_search"
♦ merge, inplace_merge"
♦ partition,

stable_partition  

 Permutations"
♦ next_permutation"
♦ prev_permutation"

 Set Algorithms"
♦ includes"
♦ set_union"
♦ set_intersection"
♦ set_difference"
♦ set_symmetric_difference  

 Minimum and Maximum"
♦ min"
♦ max"
♦ min_element"
♦ max_element"
♦ lexicographical_compare"

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 35	

Exercise	

 Code the population class for the Penna model based on a
standard container"

 Use function objects to determine death  

 In the example we used a loop. "
♦ Can you code the population class without using any loop?"
♦ This would increase the reliability as the structure is simpler! 

 Also add fishing in two variants:"
♦ fish some percentage of the whole population"
♦ fish some percentage of adults only"

 Read Penna's papers and simulate the Atlantic cod!  
Physica A, 215, 298 (1995)"

stream iterators and Shakespeare	

 Iterators can also be used for streams and files"
♦ istream_iterator"
♦ ostream_iterator  

 Now you should be able to understand Shakespeare: 

int main()  
 {  
 vector<string> data;  
 copy(istream_iterator<string>(cin),istream_iterator<string>(),  
 back_inserter(data));  
 sort(data.begin(), data.end());  
 unique_copy(data.begin(),data.end(),ostream_iterator<string>(cout,"\n"));  
}  

Data structures and algorithms in the C++
standard library	

Weeks 7&8	

Programming techniques for scientific
simulations	

 36	

Summary	

 Please read the sections on"
♦ containers"
♦ iterators"
♦ algorithms"

 in Stroustrup or Lippman (3rd editions only!) 

 Examples of excellent class and function designs"
 Before writing your own functions and classes: 

Check the standard C++ library!"
 When writing your own functions/classes: 

Try to emulate the design of the standard library"
 Don't forget to include the required headers:"
♦ <algorithm>, <functional>, <map>, <iterators>, … as needed"

