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Exercise 13.1 Dielectric Susceptibility of Free Electrons

Consider a non-interacting one-dimensional gas of spinless electrons,
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We want to evaluate its linear response to an external scalar potential, i.e. a perturbation of
the form

OH = e/dz o(z,t)n(x) = e/dw oz, t) ¢l (z)e(x) . (2)

The density operator n(x) is defined by the second equality.

a)

To compute the linear response, use the Kubo-formalism (section 6.1) for the dielectric
susceptibility,
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where nipy(x,t) represents the density operator in the Heisenberg picture. Show that the
Fourier transform x(q,w) of xe(x — 2’,t — t) can be written as
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where f(e) denotes the Fermi function.

The imaginary part of the so-called Lindhard function x(¢,w) obtained in a) encodes the
spectrum of the (charge) excitations that couple to ¢(x,t). Derive conditions for the region
in the (g, w)-plane for which Im x(¢,w) # 0 holds and make a schematic graph. Argue that
the “particle-hole excitations” also fulfill the same conditions.

Hint: In order to consider excitations from the ground state, consider the zero temperature
limit and first show that x(¢q,w) can be written as
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Then, take the continuum limit and obtain Im y(¢,w) using the Dirac identity

where P denotes the Cauchy principal value, and integration over x is implied.
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