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Lecture 1

1.1 Situation Thermodynamic system, extensive variables Xi, Xo, ..., X,,. Define entropy func-
tion S = S(X1, Xo, ..., X;,). Intensive variables F, Fy, ..., F,, obtained by taking partial deriva-

tives of the entropy function F; = F;(Xy, Xo, ..., X)) = 68)?.

Example: Let X; = U (energy), Xo = V (volume), X3 = N (particle number). Use dS =

%dU — £dV — £dN to get Fy = %, Fy=—% and I3 = —£.
Remark: We are more used to obtain intensive parameters from the internal energy U rather
than from the entropy S.

1.2 Consider a system with some of the intensive parameters F; i = 1, ..., 7 fixed (the comple-
mentary, fixed X, omitted from the notation).

Examples: 1) r=1X; =U system | reservoir system I.p
Nr=2X =U, Xs=V DN fiexd) | at7 | 2| (N fiexd)

1.4 Example: Consider the situation of example 1. To describe the system in terms of sta-

1.3 Postulate The probability distribution for X; ¢ = 1,...;7 is

1 - A
W(Xl, ...,XT)Xm cee er = exXp {E [S(Xl, ...,XT) — ZEXZ - S(Fl, ...,Fr)

=1

(the function S is introduced in order to normalize W to unity).

tistical physics one would use the canonical ensemble W (z)dz = %e‘ﬁH(x)dx. In terms of
energy
1
W) = 800G~ W) = [ 500 (w) - D) -
v 1 . \
= €Z /dxé(?—t(x) -U)= EeE(S(U)—TU)

We recognize the structure of the result to be the one of 1.3. The normalisation factor is
1 = e PP such that S = L.

1.5 The parameters X; fluctuate around

e average values:

e most probable values: W = maximal < exponent maximal < S — . F;X; = maximal

& I = ;—)i. Interpretation: F;(Xj,...., X,) = the prescribed value for F;.

Note that average values and most probable values are not the same: they are close together
for large systems (except at a phase transition).

U = —%. Note that

Examples: 1) In the first example we would maximize S — X, F; = S — %

F =F(1/T) (free energy).



2) In the second example we would maximize S — X 1F; — XoFy = S — %U + %V = —
TS +pV) = —7G (Gibbs free energy).

U -

1
T

1.6 Average values To obtain a closed formula for the average (X;) differentiate normalization
condition [ WdX;---dX, =1 with respect to Fj:

0= /l (_Xz' aS) WdX---dX, = (X;)=- >

k OF, OF;

1.7 Fluctuations Let dX; = X; — (X;) (note (6.X;) = 0 per construction). We calculate the
second moments

0 00X
— X ki X e X — X
k/(aF(é W) — aFjW)dl dX, ( )/Wd1

0 (Xi) 8 (X;) 525
:><5XZ»5X»>=—I<;( ) :_k< j .
’ OF; ) byt OF; ) gy pi OF;0F;

1.8 Examples: 1) Consider the situation of example 1) in 1.2; U = (U)

(6U)?) = —k (%) = kT? gg = kT?*Cy
T)/) v,N

with Cy = Ncy, cy: specific heat per mole. Why to stress this? Because for a system of size N
we have U ~ O(N) (extensive) = fluctuations ((6U)?)'/? = O(v/N). (not true when ¢y — oo
(at phase transition))

2) Situation of example 2 in 1.2.

2
((BU)?) = —k o = kT? ou =kT?( Nec, — 2pVa + P Vier
o(7) o) ) s T
-z N T
ov oV P
oU -6V) = —k =kT?* =) =VEkT?(a—- £
) (57), =y (o= o)
BN T
ov ov
(V) = —k p = —kT ( ) = VkTky
T
with cp =T (g—g) N = specific heat at fixed pressure
a= % (g_v PN = = coeff. of thermal expansion
—% <0—V> = isothermal compressibility

(To prove the results use the relation (%) = (B—T) =z (8—;; on U =G+TS —pV,

af +
4G = ~SdT + Vdp = (%), =T (35), - p (3), and (%) :TT(Q—g)T—p(%—;)T)

S



1.9 Higher moments To calculate average values of products introduce the generating func-
tion

r

<ﬁx> = k"/Xm - dX, (H a%) exp {% [S(Xl, X)) =Y (B = X)X = SR, )

=1

— k" (H %) /Xm - dX,exp {% [S(Xl, o X)) =Y (Fr = X)X = 8(Fy, . F)
i=1 Ji

i=1

(1T .9 1 :
=k (H a)\ﬁ) /Xm -dX eXp{E /\17...,F —AT)—S<F1,...,F»,‘)]}X

},\io
}M:O

tion of moments.

Example: j; =1, jo =1, j3 =2 = <UUV> kE )8)\2/\ Z()\l,)\g,)\:;)

1.10 Cumulants ((J], Xj,)) are defined recursively by the formula

()~ ((I))

where P = (C, (', ...) runs over all partitions of {1, ..., n} (Partitions: P! := {I C {1,...,n};|I| =
i}, P="Pp).

Examples 1) Clearly we have < X;) = ((X;)) for one X;.
2) For two X;’s we have (X, X,) = ((X;)) ((Xj)) + ((X; X)) such that ((X; X)) = (X;X;) —
(X)) (0X,0) = (XX, — (X0} (X,) = (X, = (X)X, — (X)) = (3X,0X,)

3) Higher cumulants are obtained recursively.

1 Generating function for cumulants Without proof we have

<<ﬁx>> _ ! (H o ) ( DV —g(Fl,...,FT))M:O

In other words the generating function of cumulants is almost the logarithm of the generating
function of moments.




Lecture 2

2.1 Recap lecture 1 - Thermodynamic system characterized by extensive variables X1, Xo, ...
Entropy S = S(X1, X5, ...) concave. Intensive variables F; = Fi(Xy, Xo,...).

- Legendre transformation: F/(7') = infg(U(S) — T'S)

- Statistical mechanics: canonical partition function S(U) Laplace A Z(B)

transform
Z(8) = / dae M) = / dUe™"Y / dzd(H(z) — U)

_ ()() ()()

VvV
3(U): microcan. part. fct.

. . ) Laplace
- Equivalence of ensembles: diagram commutative for S
large systems transform

- System with fixed values of intensive parameters.
- Postulate: probability for X; € dX; is Figure: equivalence of ensembles.

}

1 - A
W(Xl, -">Xr)dX1 cee er = exXp {E [S(Xl, --~7X7') - ZEXZ - S(Fl, --'>Fr)

i=1

For large systems S is the LT of the entropy function, convex.
- Main results on fluctuations:

9 (X;) d(X;) 925
(6X;:0X;) = —k < ) = —k <— =k
’ aFj Fy k#j OF; Fy k#i 6F¢6’Fj

Matrix 55 égF is pos. semi-definite.
2.2 Affinities and fluxes (1): discontinuous systems.
1) 2)
XX

Assume 1) & 2) at TD equilibrium, but not mutually (at first). Can exchange ext. quantities
X (k=1,...,7). Set r = 1 and drop indices. But use index to denote system:

index 1,2 < system, subsystem : X1+ Xy = X fixed

- Flux: J = dX2
- Entropy, dep on split:

0 0

X, 25 (51(X1) + 52(X3)) = X, v (S1(Xo — X2) + S5(Xy)) = —F1 + Fy : affinity

- Equilibrium < maximal entropy < no affinity (65 = 0) < no fluxes (no change in time)
- Entropy production

§— i<51(xl) LS (Xa) = (Fy— Fy)J

Example: 1) X =U , F = 1/T, J = energy flux, S = (— — l) J.

Ts Ty



2.3 Affinities and fluxes (2): cells of equal volume.

n—1 n n—+1
__>Jn __?]n-&-l
- rate of change of X in cell n:
dX,
dt = Jn - Jn+1

- rate of production of X at boundary n: 0 (X is not produced, X is exchanged)
- rate of change in entropy in cell n:

as, 08

E = aT(Jn - Jn+1) = Fn(‘]n - JnJrl)

- rate of production of entropy at boundary

: oS oS as

- entropy flux through cell n

JS,n = Fan
dsS, :
dt = (Fn+1 _VFn)Jn+1/_Fn+1Jn+1 + Fan = Sn+1 - (JS,n+1 - JS,n)
St
= rate of change: production + transport: Z 45 = Z S,

2.4 Affinities and fluxes (3): continuum limit: replace n — x and (n + 1) — n — dx,
X, = X(2)de, Bo s Xdy, Jopy — J, = VI(2)dz, S, — S(z)dz, F, — F(z), F, — F,_q —
VF(z)dzx, where X (z) = density, J(z) = flux density and S(z) = entropy density. Then

0X . 08

0= E—FVJ (COHt. eq.) S = E—FVJS
with S=VF.J= entropy production
s _

% = —F'VJ = rate of change of entropy
Js = F - J = entropy flux

After reinserting indices: S = S opey VE; - Jy,
9 =— ;;:1 Fp N Jj,
Js =2 i1 Fidi

2.5 Remarks: 1) In the steady state (8;? =0): %—f = 0 but S # 0 in general

2) Heat flux Jg (dS = %) = Jg = JTQ. In the steady state S = V.Jg = V (1) Jo + +VJg (st
term: "heat transfer from hot to cold”; 2nd term: ”heat source at temperature 7'

2.6 Markov processes Fluxes J;, depend instantaneously and locally on affinities F; = VF;:

Jp = Ju(Fry oy Fry Fry o F)



Process is linear if moreover J;, = Zj Ly; F; with Ly = Li;(F1, ..., F)).

Example: X =U, F = % Fourier’s law: Jiy = —xV7T. This may be written as Jg = kT°V (%)
= Lyy = KT?.

2.7 Onsager relations For time-reversal invariant systems (in the microscopic sense)
Li;(Fy, Fy,...) = Ljg(F1, Fs, ...)
(Onsager, 1931). More generally: under time-reversal = two types of behaviour:
~ X; g UV N, ..
Xi—= X; = (e ) .
—X; (e.g. M=magnetisation,...)

Accordingly

R - F; (e.g. %,é,—%...)
—F (eg —F,..)
(in fact: S+ S =S, dS ~ dS = dS for irreversible processes, dS = 3", F;dX;. Thus if X;

changes also F; has to change, since dS does not change)

Then o
Ly;(F1, Fy,...) = £Ljp(F1, Fs, ...)

with £ for kj of same/opposite type.
Example: Lyy(H) = Lyy(—H) since V=V and U = U (same type).

2.8 Origin of the Onsager relations Situation (1).

1) 2)
—,

A linear process has Jj, = linear answer to affinity = ij(Fj@) - Fj(l)). At equilibrium: (Jg) = 0.

Hypothesis: if there is a fluctuation 0X; # 0, and hence Fj(Xy,...,X,) = Fj, then J, =
> L (F(Xy, ..., X;) — F}) ("fluxes due to spontaneous fluctuations obey same
law as if due to an imposed affinity”)

Side computation: from g—;’j = H(F(Xy, ..., X)) — F))W = 0E;W
ow
J

00X;

= —k
X,

WXm t dXT = —]{Zéw

System time-reversal invariant with + type obs’s: X; — X; = X;. It follows
(0X;0X,(t)) = (0X;0X,(—t)) = (0X;(t)6X,;)  (time-reversal + stationarity).
Divide by t and let t — 0:

<5X¢5Xj> - <5Xi5Xj> = S Ly (0X6F) =Y Ly (0F6X,;) = L= Ly.
k k



Lecture 3

3.1 Recap lecture 2 - Extensive quantities X;, ¢ = 1,...,7. Densities:
« Xi(z,t) (i =1,...,r density of extensive quantities)
. Ji(z,t) (density flux)
. S(z,t) (entropy density)
. Fi(x,t) (associated conj. intensive quantities)
. 928 = 3" F,%5 (change of entropy)
. Js =), I J; (entropy flux)
. S =>(VF,)J; (entropy production)
0X; ., 08

T I S = E—I—VJS

- Relations between quantities: 0=
- Linear Markov processes: Jp = ZijVFj (VF; = Fj: affinity), Ly; = Ly (Fh, ..., F))

- Onsager reciprocity relations: for time-reversal invariant systems (and observables X;)
Lyj = L
3.2 Application: Entropy production:

S=> VF, L,;VF; >0

kj s

(from 2nd law) = Ly; is positive semi-definite

3.3 Variational principle (minimum entro roduction, Prigogine, 1947): consider
time-reversal invariant system occupying 2 and fields Fj(z) (x € ), with

(i) Lg;(Fi, ..., F.) = Ly; constant, independent of F; i = 1,...,r (doubtful: r =1, X =U =
LUU = /ﬂ](T)T2)

(ii) Fj(x) prescribed on 02 or no flux: Jy - do =0

= / Sd'x = / VE, - Jyd'x
Q PARAY

is minimal among all fields F; with (ii) iff Fj(z) is the stationary distribution (%% = 0);

. ot
(5>0 seen before)

moreover, in general, %’: <0,ie P(t) > Pyu > 0.

3.4 Proof: Variation of P:

Then the entropy production

0P = Z / (VOFy - Jj+ V- 8J) d" O“S‘””gerzz / VOF, - Jid'z

- SE, J, da—/cSFkVJkd”x (D Z/cst VJ, d'z
Q

k =0or =0 :,BXk

ot



0X

Thus 0P =0 forall 0F, <= Gtk =0 Vk
OF; oP
Moreover, for 0F; = 5t O 0P = Eét, Xy = Xp(Fy, ..., F))
) OF, 0X, OF, (90X}, OF, / Iy *?S | oR,
=2 il =2 - <
=2 o = [ (n ) =S L | v | <
k (i#0) kl ———

>0

Note:  6°P=2) ViF; ij VoF; >0 =  minimum [

kj >0

3.5 Transformation properties of fluxes and affinities Recall: J; = >, Ly Fy (F; =
VFj). Linear transformation of differentials:

5Xz, = Zaij(Fl, ey Fr)de Fi/ = Zbij(F17 "'7FT)F]
j J

Then cllS = > FjdX; = >, FjdX; if the two transformations are contragradient i.e. B =
(AT) .
Correspondingly:

- Ji =205 (= VI # 32, ai;V.Jj, no continuity equation for ' quantities)

- Fi=205F (FVE =V (Zj bz’ij> )
Then J; = >, Lj;Fj with L' = ALB™" = ALAT = L' = I is inherited.

3.6 Example: extensive variables U, N. Fluxes Jy, Jy: dS = —5LdN + %dU. Instead want to
have Jy, JJog =TJs = —pJy + Jy. In matrix form

()-a(k) o a-(L 1) wr-(30)

Affinities: (AT)‘I( ((%)) ) ( _V(%%Zr%/)ﬁ%) ) N < _(V_M )

3.7 Electric, thermal and thermoelectric effects. Consider a wire with

- electric current

- heat current
Need 4 effects (experiments) to identify the coeflicients L;;. Onsager relation Lyy = Ly
makes a prediction. N = number of electrons; u = py + e electrochemical potential (p:
chemical potential, ¢: electric potential); p = p(uo,T): density, fixed by neutrality = (i)
W4V Iy=V-Jdy=0;(il) po = po(T); (ili) Lij = Ly;(pt0, T) = Lyj(T)

Remark: Jg is heat flux between parts of wire; does not include ﬂux to any thermostat needed

to keep T' constant in time. Energy production (accumulation) E = —VJy, Ju = Jg + pJn

Jo = LNN‘]N and hence V.Jy = (éi—x +N) ViN+Vudy = % = -V Jy = ﬁJN = ;JN
(Joule heat)



Lecture 4

4.1 Recap lecture 3: - System with extensive variables N,U (fluxes Jy, Jy; affinities —V £,
—V%). Instead Jy and Jgo = Jy — pdy
- Fluxes proportional to affinities

\Y 1
JN - LNN (_TM) LNQV?

v 1
Jo = Lox (_TM) + LooV

- Onsager relations:
Lyv = Lun
- Thermoelectricity: N = number of electrons  u = ug + ep
- Neutrality: 1) VJN = 0, 11) Mo = IU()(T), 111) Lij = Lij (T)
4.2 Isothermal electric conductivity g: T' = const, Vu = eV, since Vg = 0, T' = const.

Phenomenologically: eJy = a(—=V¢), o : conductivity

: LNN LNN
Comparison: Jy = —TV,u = o= -
e T
Energy accumulation in the wire: —— =V-Jy = —J% = ——Jx (Joule heat).
ot o Lyn

4.3 Heat conductivity r: Temperature gradient 7' = T'(z), no current Jy = 0.

Phenomenologically: Jo = —xVT, (Fourier’s law)

Vu LNQ 1 LQNLNQ 1 det L
Iy =0 = ~H_ZNeg_- g _ (_ZONZNQ | o S o =
N T I T 7@ Lon 1) V7 T LuNT?

ou
Energy accumulation: T V-Ju = V(kVT), where we used Jy = Jo+uJy = Ju

4.4 Seebeck effect: voltage, but no current Jy.

metal A
Qg T
T /
1297 g KR
Phenomenon: difference in temperature 75 — 7T induces potential difference eV =

IR — JbL. €EAB = §—¥2 (Seebeck coefficient or relative ”termopower”).

JN:OZ

Lvo VT 1 1 [ Lyo?dT
Vpo _LweVT 1 W.dsz__/ Ly dT
LNN T e path (& T LNNBT

(4)

= eqp=cp—c4 Withey = % (absolute ”termopower”)
el bnn



4.5 Peltier effect:

Phenomenon: isothermal junction, current eJy = energy is accumulated at junc-
A
tion: Peltier coefficient: II4p = —Jf;]'VB.
—t i
o)
A junction B

i, Jy continuous at junction (because of neutrality), 7" = const.

A a_ Lon 4
Juls = Jalz = JINn
Lynp
(Interpretation: EQ—Z = heat transported per carried electron ). Given that Lon = Lyg, then

Hap = T(ep — e4) (2nd Kelvin relation, 1854, empirical). Interpretation: es4 = entropy per
carried electron.

4.6 Thomson effect:

Phenomenon: (a) temperature 7'(z)
(b) current eJy = energy accumulation is more (or less) than the sum of
each case alone.
ou  é?
— =—J+V(VT) - H
o~ g TV s IL

Thomson Heat
a
(b) (2)

with Thomson heat (absorbed heat by the metal, thus minus sign):
H=7VT- ely 7 : Thomson coeflicient

(1 > 0: Cu, Sn, Ag, Cd, Zn, ... 7 < 0: Fe, Co, Bi, Pt, Hg, ...)

LNQ vT T det L LNQ
= — = T
V[JJ LNN T LNN JN JQ LNNT2V + LNN JN
ou

det L Loy Lyg VT T,
= — T _— _— _—
{V (LNNT2V ) v (LNN N) N N

After identifying terms:

LQN LNQ VT LNQ 1 de de
(V <LNN) ) JN \Y ( dTV GJN = T qT

4.7 Remark: dg% =ep —¢ea+ 75 — 74 (1st Kelvin relation: involves three effects, no need of
Onsager relations).



Part 11

Statistical mechanics of linear response



Lecture 5

5.1 Consider a quantum system with Hamiltonian Hj, mechanically perturbed

X (t): prescribed "force”, X (t) — 0 (t - —o0) (X € R)
A: "displacement” (A is an operator)

Examples: 1) Particle perturbed by a force H;(t) = —F(t) - & (A is the position operator)
2) Atom in magnetic field H(t) = —32-B(t) - (L + 25) (A is angular momentum operator)

3) System open to a particle reservoir with chemical potential u(t): H;(t) = —p(t)N (A is the
particle number operator)

5.2 State initially (¢ — —o0) in equilibrium state pg: [Hy, po] = 0. This means py = eH0t/" pje=tHot/h
e.g. thermal state.

Time evolution of p(t) under H(t): ihp = [H(t), p(t)]

Let B = B* be any observable. With (B), = tr(pB) we denote AB(t) = (B) ;) — (B),,.To

first order in X (T'): dynamic response:

t
AB(t) = / X(t —$)X(s)ds x(t) : isolated susceptibility.

—0o0

Properties: 1) causality
2) dissipativity

5.3 Remark: 2nd term my be omitted. Just consider B — (B) , instead of B
Scheme does not allow for thermal perturbations (e.g. reservoirs at different temperatures or
temperature gradients)

5.4 Causality:
AB(t) = / x(t —s)X(s)ds, with x(t) =0 for ¢t < 0 (causality)

Fourier transform
X(w) = /X(t)em weR

Note: x(t) is real (as expectation value of a self-adjoint operator) but ¥ = Y(—w) i.e. Rex(w) =
Rex(—w) (even) and Imy(w) = —Imx(—w) (odd).

Example: 1) For X (t) = 6(t) we have AB = x(t): response to a pulse.
2) For X(t) = e~ we have AB(t) = [*_x(t — s)X(s)ds = Y(w)e ™' : X(w) is response to
harmonic driving; x(0): static susceptibility (const. driving).

5.5 Properties: 1) x has an analytic extension in Imw > 0, continuous up to Imw =0

2) X(w) = 0 as w — oo in Imw > 0.
Proof: 1) x(w) =[5~ ..; et = eiRewlemImet e || < 1 for Imw > 0 = {(w) is absolutely
convergent. 2) By Riemann-Lebesgue lemma. [J



5.6 Dispersion relations (Kramers-Kronig): For w > 0

oo o /
Imy(w) = _2_wp/ Rex(«) ,

T w2 — w2
. 2 * wlmy(w')
RGX(W) = ;P/(; mdw/

5.7 Proof Kramers-Kronig relations: Use Cauchy formula

Rew’

Let wg = w + 1€
- semicircle does not contribute as R — oo

— =P +ird(z).

) 1 X(«') ,_ 1 /°° XW) oo
=lim— | ————dw = — d
(@) ;ﬂ)l 211 / w —w —1€e n 2mi & o W —Ww W imx(w)

1 1 o0 > /

= —X(w)= —73/ de’ & separate integral using symmetries of Re(..) and Im(..) O
2 2m o W —w

5.8 Dissipativity: a property of x(w) in the particular case where A = B (po: thermal state).

Energy increase

(H(t))pw) = %tr(ﬂ(t)/)(t)) = tr(H (t)p(t)) + te(H(t)p(t))

(1st term: work done, 2nd term: heat). Here 2nd term is 0, because ihtr(Hp) = tr(H[H, p]) =0
Work done: (H = —XA) let X(t) — 0 as t — +o0

W= / dt p@) / X(t >p0)dt:—/i /ZX(t)X(t—s)X(t)dsdt

Dissipativity: W > 0 (2nd law)

5.9 Consequences: 1) static susceptibility x(0) > 0
2) Imy(w) >0 (w > 0).

Proof: After integration by parts
o d
W= / x()L



2) (A)pyiy)dt = — [ x(t—5)X (s)ds = [ dwdsx(t—s)X (w)e ™ e“le ™ = [ dwy(w)X (w)e ™",
Parseval:

1 [ . 1 [ .
W= —/ (i) R ()| X () 2o = —/ wIm ()| X (@) Pdw
2r J_o ™ Jo
requires Imx(w) to be non negative. O

5.10 Kubo formula: Solve von Neumann equation
ihp = [H(t), p(t)]

with initial condition p(t) — py as t — —o0.
Interaction picture: p(t) = eot/hp(t)e=Hot/h and H; = e/Hot/h H (1)~ Hot/h

S iBA(E) = €U (o, p(0)] + [H(E), p(t)])e 0 = [HT;(2), (1)
with p(t) — po as t — —oo (since po is an equilibrium state).
1

~ i b ~ ! —i —s i —s
) ==y [ () pNds = po = [ I (), pla))e s

—00

where we used p = po + O(X) (only linear response). Thus we get

AEB) = [ (Bt s) 5 A mIX ())ds

Hence

Xalt) = (B[, p)0(1) = 3 or((B(0), Alpu) 000

(Kubo formula: expresses linear response in terms of the unperturbed system) (use [A, Bp|] =
B[A, p] + [A, B]p to rewrite last term)

5.11 Remarks: 1) x(¢) is real. In fact, trA = tr A* (since (¢|A|p) = (¢|A*|p)). Thus

tr([B(t), A(t)]po) = tr(po[A, B(t)]) = —tr([B(t), Alpo)

2) Symmetry: In J; = L;;VF;: J; flux of X;. .
Consider B’s which are fluxes B = [Hp, A] (B is rate of change of A)

Lialt) = xpa(t) = sta(([A(1), Hol. Alpo) = ptr(([A, Hyl. Al

where we used the Jacobi identity and tr[[A, A], Hy|po = tr[[A, A]po, Ho] = 0.
5.12 Lemma (Klein): f convex, A = A* | B = B* then

wf(B) 2 trf(4) + trf (A)(B — A)
Application: for f(x) =zlogz, f'(z) =1+ loga:

trBlog(B) > trAlog(A) + tr(B — A) + tr(B — A)log(A) = tr(Blog(A) + B — A)



5.13 Application: H(a) with a = work-coordinate, « = «(t) (0 <t < T), a(0) = «(T),
H = H((0)) = H(a(T)).

Evolution from t =0 to t =T U unitary.
Initial state: p.

Work done (= energy accumulation in expectation):
AE =tr(HUpU™") — tr(Hp)
2nd law: If p is a thermal state, i.e. p = e ?# /Z then
AE >0
5.14 Proof: Take logarithm: —3H = logp + log Z. Then

U* log pU:_log(U*pU) Klein

BAE "= tr(plog p)—tr(UpU* log p) tr(plog p)—tr(plog(U*pU)) > tr(p—U*pU) =0



Lecture 6

6.1 Recap Lecture 5: Statistical mechanics of linear response:
- H(t) = Hy — X(t) - A with X € R and A operator.
- p(t) — po equilibrium state (t — —o0)

- Dynamic response

- Kubo formula

xBa(t) = %tr(B(t)[A, po)0(t) MBI ‘

@)
- Symmetry: Onsager relations. Systems (1) and (2), Xi(l, XZ@), i=1,...r J;, = d)fl; is a flux

(of X;, conj of F;) Linear Ansatz J; = Zj Lij(Fj(z) — Fj(l)) then L;; = Lj;.

- Consider B’s which are fluxes
7

B =
h

_ 1 .
[H, Al = Laat) = xpalt) = (A, Ho], A(t)]po)
- Time reversal T (is anti-unitary operator)

- invariance of dynamics T*HyT = Hy = T*e "Hot/MT = ¢iflot/h

- invariance of a state T*poT = py

- invariance of observables T*AT = A = T*A(t)T = A(—t)

6.2 Remark: (T¢|A|T¢) = (T|AT¢) = ($|T"AT|¢) = trﬁ(‘T*/AT) = tr(A)
Thus L, 4(t) = Lya(8) = tr([[A, Hol, A(=t)]po) ™ ™= "7 La(([[A(t), Ho], Alpo) = La4(t)

6.3 Thermal state: py = e ?#/Z where Z = tre FHo,

6.4 Remark: Recall tr(AB) = tr(BA) and tr(A42%) > 0.
But expectation not symmetric: (AB) = tr(ABpy) # tr(BApy) = (BA)

However: for

B tr(eP—B)Ho Bp—AHo A
(B; A) = 5L / e - — (Bogoliubov, Kubo, Mari)
0 re

we have
1) (B; A) = (4; B).
2) for A* = A: (A;A) >0

6.5 Proof: 1) change of variable X' := § — A
2) B = A = A*; follows with

tr(e()\—ﬁ)HoBe—AHoA) _ tr((e—AHoﬂAe()\—ﬁ)Ho/?)*(G—AHO/2A6()\—5)H0/2)) >0 O



By fundamental theorem of calculus (FTC)

FTC ¢ o 4
[A, e PH0] = o= BHo(BHo ge=BHo _ A) "= ﬁ[A, e~ PHo] = ¢=PHo / dAe**Hoﬁ[HO,A]e*AHO
0
= ¢ PHo /B de Mo fe=Mo
0
Thus . '
xsa(t) = B(B(t); A)0(t) = —B(B(t); A)6(t)
(Kubo formula when py is thermal state).
If B is in addition a flux (i.e. B = A) then
Ly = xpa(t) = B(A, A)o(t)
6.6 Notation: Write
1
XBa(t) = ¢pa(t)0(t) where ¢pa(t) = ;Ltr(B(t)[A,po])
Then ¢pa(—t) = —¢ap(t) dpa(—t)
Moreover: R
¢AA(W) =27 - Im)%AA(w)
In fact:
2i - Imyaa(w) = Xaa(w) — Xaa(— / Gaalt)(e™ —e " )dt
/ ¢A zwtdt _/ ¢AA zwtdt / d)A zwtdt
—¢AA
= haa(w)
Set GBA() = Lr({B(t), A}po) = 3((AB) + (BA)) (symmetrized correlation function) If
(A),, =0 and (B),, = 0 then it expresses fluctuations.

6.7 Theorem (Callan-Welton): Let py = e #H° (thermal state). Then

Gpa(w) = —%Lc th 5—M¢BA( )

In particular

Gaa(w) = heoth ﬁ—hwlm Xaa(w)
g A

Fluctuation Dissipation
6.8 Bemarks: 1) coth § = {5 = 3555
2) In the classical limit (hw << kgT): hcoth % ~ hﬁlm — %TT

6.9 Lemma (Kubo-Martin-Schwinger): pg as above. Then

tr(B(t)Apo) = tr(AB(t + ifh)po)



More precisely: f(t) = tr(B(t)Apo) has an analytic extension from ¢ € R to the strip —fh <
Im(t) < 0, continuous up to boundary with f(t —ifh) = tr(AB(t)po)

6.10 Proof of Lemma: use cyclicity

tr(eitHo/ﬁBe—itHo/ﬁAe—ﬁHo) — tr(A ei(t-l—iﬁﬁ)Ho/fLBe—i(t-‘riﬁﬁ)Ho/ﬁ e—ﬁHo) — tr(AB(t—’—Zﬁh)e_ﬁHo)

-~

=B(t+iBh)

6.11 Proof of Theorem: We have

f(w) — / tl"(B(t)ApO) eiwtdt shift contour / f(lf . iﬁﬁ)eiw(t_iﬁh)dt — 6ﬁﬁw / tr(AB(t)po)emdt
S———
T N ®

It follows

Thus



Lecture 7

7.1 Recap lecture 6: - Response function : xpa
- symmetrized correlation fct. (between A at t =0 and B at t):

Goa = Z({B(), Al

& fluctuation if (A),, = (B),,-
- Theorem: If p, is thermal state, then

A hew
Gaalw) = hcothﬁ— Im yaa(w)
2 —

—>¥ class. lim.

7.2 Brownian motion (Einstein 1905):

Phenomenon:  particles of size ~ 10~°m suspended in a medium (liquid or gas) perform
random motion

Fluctuation Dissipation

Einstein formula: D = pkT D: diffusion constant (”fluctuation”)
p: mobility (”dissipation”)

Diffusion: density n(Z,t) of particles < current density it
- continuity equation: S5 tV-7=0
- with j = —DVn (D: const.; Fick’s law) we get: 9n = —_V.j=DAn

Probability interpretation: n(Z,t) probability distribution of a single particle

/n(f, d®z =1

- note consistency

%/n(f, td*z = % BBy L /(Al)Dndgm =0
1D =0

- mean position

- variance

((AZ)*)(t) = {(AZ)*)(0) + 6Dt

spread of distribution increases at rate D (= D: diffusion constant)



7.3 Einstein’s thought experiment: Let us perturb the system & drive with a force Fona
particle (1°* accelerate, then feel friction = attend limiting velocity). It attains limiting velocity
(as a result of friction)

U= ukF "linear response”
hence

Jdift 7 Jarife = nU = nuk’

jdrift: due to F and not Vn.
For a conservative force F' = —VU we calculate the total current:

Jaitt + Jarie = —DVn + nuF

Total current vanishes at equilibrium: n(z) oc e Y@/ T Thus Vn = —nYs = HVU =puVU.
Thus D = pkT.

7.4 Derivation from general theory (1-dim): H;(t) = —X(t)A = —F(t)X (¥ =

response, F = driving), A =z, B = 7.

=
T

Response function: XBa(w) = p(w) since (2)(w) = p(w)F(w).
Formula: Xpa(t) = B(A(t); A)o(t)
In our case

p(w) = Xpa(w 5/ ); &) e'dt
On the other side

. 1 2= 1
D = Jim o ((x(t) = 2)?) = Jim /dtl/dtg (tr)a(t)) "2

_tlir?OQ_Q/dtl/ i(t)a(t 1)) = lim - /dt1/ dt' (#(0)a(t')) =
= [ ot

= u=pD.

7.5 The Langevin equation (1908): Forces on Brownian particle

- friction: average, combined effect of collisions = —p& .
- fluctuating force: deviation from average = £(t): random variable with (£(t)) = 0,
uncorrelated at different times (£(¢)£(t')) = ad(t —t') (a to be determined).

Note difference: Einstein: velocities
Langevin: acceleration

Newton: m = i+ £(t), (U=1)

Initial condition: velocity distribution as given by equipartition: $m(7?(0)) = 3kT = (¢%(0))
KT

a to be determined such that (T%(t)) = (v%(0))



7.6 Heuristic solution:

Let € > 0:

- we have

— —

since ¥(t — €) depends only on {{(s)|0 < s <t — €} (i.e. independent of £(t)).

»

- and t+e
mi(t+¢€) = mi(t —e) — pv(t) - 2€—|—/ £(s)ds
H/—/ t—e
JEE Gt
Hence m(5(t + 0)£(t))

—

(1)) = «a.
Pick: (0(t +0)E(t)) = & = w(t?) = & or a = 2mu(d?).

2m 2m

7.7 Better solution:

2 1 t R 5 5 t
@)= F (@O + oy [ dsy [ dsal@snfsanenon ) e (@ + 5 [ ase
m= Jo 0 m=Jo
o _2my [ 9 a )
- 0)) — —— ) = (#2(0
o e B (20 - 5o ) L (0
This means, in particular time, independence. Thus (...) = 0 = (v?(0)) = 7%

Diffusion: (7?(t)) ~ t diffusion behaviour

) =21 ) 1+ 20 = 200 - L a0 T + 2 @0éio)

az?

NI

dt

— —

Note: (Z(t)E(t)) = (F(t))(£(¢)) since £(¢) depends on {£(5)]0 < s < t}, #(t) is continuous.

Hence: P p
=2 H =2 2 . M s
2 ne —9 Py =2
RO+ L@y =2 = a) + Lutr) = 2
Initial condition: u(0) = 2(¢(0)Z(0)) = 0 if ¥(0), #(0) are uncorrelated and (7(0)) = 0 = ¥(0)
is even fct.

Solution of ODE is



Discussion:

15> 2. ()~ (#(0) = 61,
te< ™ (7 (1)~ (7%(0)) ~ ()¢

0

where D =

(ballistic motion),




Lecture 8

8.1 Back to 2nd law Consider process 0 — 1 — 0.

FH(0) H® H®
0 1 0
eq. eq.
state W work Q heat state

2nd law: W + W’ > 0 (I cannot have extracted work from the system). Free energy F', for
quasi-static processes dF' = —SdT + dW. W' = —AF = —(F, — Fy). Hence W > AF (*).

Remarks: 1) generalizes W > 0 (for 0 = 1), seen earlier
QW4+W >0=0Q+Q <0, ie. % + QT < 0 (Clausius inequality)

8.2 Theorem (Jarzynski, 1997): For any classical mechanical system
<67BW> _ efﬁAF

with () = average at eq. state at temperature 37!, —8F; = log(Z) (Z: canonical partition
function).

8.3 Remarks: 1) This is the equality behind the inequality (*). Convexity: f((y)) < (f(v)),
e.g. f(y) =e . Thus e #W) > (e7AW) = ¢=FAF Hence (W) > AF.
2) Note average (.). In fact rare violations of 2nd law must occur.

Claim: it (W) > AF, then (W(z)) < AF for some x of positive Gibbs

. 57
measure (Gibbs measure: “—dx).

Z
Suppose otherwise: (W (x)) > AF (for all z).
(W) > AF (for some x of positive measure)
= e W@ < e=PAF strict for some x. Then (e AW @) < e=FAF (violation of Jarzyski inequal-
ity).

8.4 Proof of Jarzynski: Let H(x,\), x: phase space coordinate (x(t): trajectory with z(0) =
x), A\: work coordinate (A = A(1)).

1 o OH 0H
Partial time derivative: TN
: L dH d OH 0OH
Total time derivative: b EH(x(t), At)={H,H} + = B
T a T d
W(z) = i 5 (1), A1) = i 51 (@), A(t)) = H(x(7), A1) — H(z, Ao)

(e=PWy = Zi / dpe—PH(00) o~ AW ()
0

1
7

1 Z
dxe—ﬁH(m(T),)\l) - /dmle—ﬁH(m(T),)\l) — _1 _ e—BAF
ZO ZO

(change of variables x — x1 = x(7): symplectic transformation: |Jacobian| =1) O



8.5 More consequences: 1) Probability of violation of the 2nd law. For ¢ > 0
P(W(2) < AF = ¢) = (x(W(x) < AF = ()} < (e /W@HHAT=5) _ SAF-0) (=3W(o)) _ (=€
(we used x(y < 0) < e P result non trivial only for ¢ > 0).

2) Distribution of trajectories. x: time-reversal of configurations x — x* (e.g. (p,q¢)* = (—p,q))
of trajectories v — v*(t) = (7 — t)*. For time-reversal invariant Hamiltonian: H(z*,\) =
H(z,\) we have: if v is trajectory for A(t), the v* is trajectory for A(7 — ¢). How big is the
Pl 2
Py”

8.6 Theorem (Crooks 1998) Situation of 2). Then

Pl _ —sowen-ar)
Ply*]

P[y]: probability density of v i.e. (by determinism) of its initial condition zq = ZLOG*BH (0,20)
W(v)

ratio

8.7 Proof:
P[] _ ée—ﬁH(mo,Ao)—&—ﬁH(az’I,)\l) _ ée—ﬁH(zo,)\o)—f—ﬁH(m,)\l) _ o BW()-AF)
Pyl Zo A

Remark: ]f[[]j] >> 1 if v goes in the direction of the 2nd law.

8.8 Quantum Jarzynski identity: We saw (W) > AF (actually, only for 1 = 0 (= AF = 0),
but the proof works in general when log(Z;) # log(Z2)). Interpretation of W

(W) = tr(UpU*HW) — tr(pH®)

Statistics underlying (W): not measurement of U*H*‘(1)U — H(® (stupid choice, since objects
live at different times), but two measurements of H(® and of H(") later, W are diff. of the two
outcomes.



Lecture 9

9.1 Recap Jarzynski W > AF = Fy — Fy. Jarzynksi:

<6—5W> _ o BAF

9.2 Quantum Jarzynski identity: We saw: po equilibrium state at 57
(W) =tr(UpoU* HY ) — tr(poH?) (W) > AF (true also in QM)

final state final H

9.3 Proof: —HW =log p; + log Z;

BW) = tr(polog po) — tr(UpoU™ log p1) + log Zy — log Zy

v~

(%) B(F1—Fp)
(%) = tr(polog po) — tr(polog U*prU) > tr(pg — U pU) = tr(po) —tr(U'mU)=1—-1=0
we used tr(Blog(B)) > tr(Blog A) + tr(B — A) (Klein). O

9.4 Statistics underlying (W): not measurement of U*H (1)U — H® (stupid choice, since ob-
jects live at different times), but two measurements of H® and of H) later, W are diff. of
the two outcomes.

Let HO = Zz Ez'(O)Pi(O)a Zz Pz'(O) =L
State: - after 1st measurement:
Z Pz‘(O)pPi(O)

Energy is EZ-(O) with probability tr(Pi(O) pPi(O)) = tr(pPi(O)).

- after evolution:
U Z ]DZ-(O)PPZ'(O)U*

- after the 2nd measurement:

Y AU R
i

Work is W = E](-l) - Ei(o) with probability tr(...)
Expected work:

Wy => > (B = E)(PVURY pPOUrPY) = 3 (B — B )u(PIUPYpU)
7 J 7 7

= (tr(H(l)UPi(O)pU*)> e (UHOpU*) = te(HOUpU*) — te(H© p)

9.5 Tasaki Identity (2000):

<€f,8W> — efﬁAF



9.6 Proof:

(W) = 305 e P B (POU PO ppOU) = 30 e HE B (pO S pO
7 7 7 7

J 7 i

1 Z
- -pHW )7y _ %1 _ _BAF
- E@ tr(e UP, U)—Zo_e O

9.7 Criticism: 1) Superficially: the breaking of time-reversal symmetry occurs by hand: the
state before W was done was equilibrium state (as opposed to after). Deeper: why is the state
at some time an equilibrium state?

2) In which sense does entropy

S(w) = —/dmw(x) log w(x)
increase?

9.8 Answer: 2) 2/ = ¢;(x) evolution on phase space R*". Induced evolution of densities: w —
wi: wi(2")da’ = w(x)dz. We have da’ = |det D¢y(x)|dz. Special for Hamiltonian dynamics:
| det D¢y (x)| = 1 (Liouville). Thus there is no entropy increase

S(wy) = —/dx/wt(x’) logw(z') = — / drw(z)logw(z) = S(w)

1) H(x) = H(¢(z)) (H time independent = energy in conserved). Given energy E: M =
{z € R*|H(x) = E} is invariant under ¢;.

Ergodic hypothesis: almost all x € M have trajectories which fill M densely and uniformly.
More precisely: for any function f, continuous on M, the limit

T

fim 7 [ faat = [ dup(a)s(@)
T—oo T 0 M
time-‘aCerage ensembl::average

exists for almost all zy € M, with dug(z) = ﬁé(H(m) — E)d*z = ﬁdr‘é'}}?gr

9.9 Remakrs: 1) Ergodic hypothesis proven only for few systems.
2) For arbitrary f’s: T has to be at least of the order of Poicare recurrence time; for macro-
scopic f’s: T much shorter (not really proven)

9.10 Fluctuation theorems (far from equilibrium): Many systems are found in stationary

states, though not in equilibrium states.

Examples:
@ water
Thermostat TS
1) 2) =

Question: Is a purely mechanical understanding possible? e.g. increase of entropy?



. include TS = mechanics of co-many degrees of freedom (Frohlich et al.)
. exclude TS, but simulate mechanically its effects in system proper (Gallavotti, Cohen)

9.11 Example: Langevin equation: F' = —pui + & not time-reversal invariant. This system
may well explain increase of entropy, but is not a good system. Better isokinetic thermostat

9.12 Example: Isokinetic thermostat
H(x,t)=—+1V t
(.7}, ) m (Q7 )

(x = (p,q) € R*"). Equations of motions

p=F=-VV ==+
m
Set M = {p? = const}= fixed kinetic energy. Replace F' by its component tangential to M.
Equations of motion modify to
: (F'-p)p D
p:F—T::vp(x) q:E::Uq(x)
or
& =v(z) = (v,(x),v,(z)) = vectorfield
Solution: z(t) = ¢y(xo)

The system is not Hamiltonian, but dissipative

F.
—V-v:—ﬁpvp—aqvq:8p< p2p>p7é0

Yet reversible: time reversal © — Iz, I(p,q) = (—p,q), Iv(z) = —v(Ix). Hence:

Iy = ¢l
(Indeed: 471¢, = IV (¢y(z)) = =V (I¢y(z)). The claim follows by uniqueness of the solution.)

Moreover, div(v)|r, = —div(v)|, and d(Ix) = dz. Hence
/ (div)(z) =0 = as much contraction as expansion
M

9.13 Typically: probability distribution w;(z) initially uniform concentrates on an ”attractor”:
as a result entropy decreases!

Example: w = ﬁXA(x) (A C M): S(w) =— [, dew(z)log(w(z)) = log |A] = the smaller |A
the smaller the entropy

Clarification: in a pure Hamiltonian
description entropy does not change
S = 0. Here: System TS at T
force s heat 5

. . - S . . S

Ss+ Srs =0 W >0 Q=W ’

Clausius: STS = % > 0 thus SS < 0.



9.14 Question: Irreversibility within a time-invariant dynamics?

.15 A framework: - class of dynamical systems

dz

o = V(@) vectorfield = 2 ¢y(x) flow

(x € M: differential manifold of dimM = n) - Equip M with metric: g;;(z) = Measure:
dpo(v) = \/gdx, - - - dz,, (Lebesgue measure). Here set: g = 1.
- Time-reversal [ : M — M, x — Iz map with

(1) Io¢t:¢—tol
(i) det DI =1 (equivalent to: po(lA) = uo(A) VA C M)
- Entropy:

S(wy) = —/d:v’wt(x') log wy (')

- Entropy production:

S(t) = / alrico.zt(az:)2 log | det Doy (z)| = / daw(x)(divV (¢e(x)))
M ot M
Thus: entropy production rate = phase space contraction rate ¢(x) = —divV (x)

9.16 Proof of ”entro roduction formula”: For any A C M

/@(A) dx’:/AdmIdetD@(:Cﬂ :/deX(ﬂ%t):/MX(x,t)dx

Xz, b) = {1 z € ¢i(A)

where

0 otherwise
Chain rule: V - Vx + %X = 0. Hence:

d 0 0
— dr' = | dx—|det D = [ dr—
il / » | det Dy (o) /M v

= —/ dzV - Vx :/ dx(divV)x :/ (divV (z))dz’
M M #:(A)
= /(divV(x))]det D¢y(z)|dx
A
Now compare the integrands:

(divV (2))| det Doy ()| = %| det Depy(z))|

which is the claim.



Lecture 10

10.1 Recap Lecture 8: - Question: Irreversibility within a time-invariant dynamics?

- Example: isokinetic thermostat (time-reversal invariant, yet dissipative)

- Framework: class of dynamical systems (x € M: diff. manifold, V(z): vectorfield)
dx
dt

Metric: g;(x). Measure: dug(v) = \/gdx, - - - dz,, (Lebesgue measure). Here: g = 1.

- Time-reversal I : M — M,z + [z map with (i) [ o ¢, = ¢_, o I (ii) det DI = 1 (equivalent
to: puo(1A) = po(A)VA C M)

- Entropy:

=V(x) = x — ¢(z) flow

S(wy) = —/dm'wt(x’) log wy (")

- Entropy production:

$(t) = /M dxwt(x)%log|deth§t(x)| - /M dareon (2) (divV (6(2))) = — / Ao

M

Thus: entropy production rate = phase space contraction rate ¢(x) = —divV (z)

10.2 Definition: Average entropy production, p(x), along trajectory ¢;(z), (t € [0,71)
T
p(z) = / o (du(x =——/ divV (¢ (x :——log|dethz5T( )|
0

10.3 Consider the probability of "observing” the event p(x) € [p,p + Ap] = J for x random
w.r.t. po (not invariant probability measure under the flow ¢;: po is transient)

E;={x € M|p(x) € J}

We are looking for
po(Ey) = mr(p)Ap+ O(Ap)  Ap—0

10.4 Evans-Searle fluctuation identity (1994) ¢; is time-reversal invariant, o too. Then
mr(p) _ T
mr(=p)
E.g. for p > 0: entropy production much more likely than entropy destruction!

10.5 Proof: Let x € E;. then I¢7(x) is the initial datum of a ”backward” trajectory: contracts
at opposite rate, i.e. I¢r(x) € E_; and viceversa. In fact:

p(161(2)) = 7 log | det D (I6x (x))] = Lo det Dor ()] = —pl()
We used ¢prolgpr=Io¢.0¢pr=1= Dor-DI-Dor(x) = DI(z).

io(E-1) = po(Ior(Ex)) " polér(Ey)) = [E | det Do (x)| de

:/ e TPOdy € [e7 T TV i (Ey)
E;



Thus % € [eP, eTP+AP)] . Finally, take Ap — 0 to get the claim

mr(p) — o7
T (—p) B -

10.6 Criticism: prob. is w.r.t to the (transient) Lebesgue measure and not w.r.t stationary
distribution.



Lecture 11

11.1 The stationary measure p*: for any continuous function f on M the limit

Jim / 0t f(du(z0)) = /M dyt(2) f ()

exists for pg-a-a o, and is independent of x, (initial data). u* is stationary
[ant @@ = [t @)= [t @i

11.2 Remark: 1) Analogy with ergodic hypothesis for Hamiltonian dynamics. Here: chaotic
hypothesis.

2) dut: concentrated on some attractor; typically du* is singular w.r.t dyg (general definition:
oy is singular w.r.t. po if gy (R\ S) =0 (i.e. py lives on S) and po(S) = 0: e.g. on R: dus = du,
dyy: Dirac measure)

3) Can also introduce du~ for T — —oo: in general du~ # dut. But p=(A) = pt(IA) if
dynamics is time-reversal invariant.

11.3 Theorem: du™ exists and is a Sinai-Ruelle-Bowen (SRB) measure if V' (resp. ¢;) is mixing
Anosov system.

11.4 Aside on stable/unstable manifolds: Definition: given a point x € M, the global

stable/unstable manifold is

1
W; = {y € M|lim sup + log dist(¢4(x), &1(y)) < 0}
t—o00

1
W = {y € M|limsup " log dist(¢_¢(z), p—¢(y)) < 0}
t—o00

Note: 1) y € W2 &z € W, & transitive. M is partitioned into equivalence classes a € I=
index set. 2) ng/ “ consists of points y whose future/past trajectory approaches that of z
exponentially fast. 3) W2/™ is not a manifold in general.

Local stable/unstable manifold

Wi(e) = {y € M|dist(éy(z), ¢(y)) < ee™™,t >0, for some A > 0} W: = U W:(e)
e>0
Fact: for £ > 0 small enough, W;(e) is a (smooth) manifold.

11.5 Anosov system: At each x € M: W2(e), W(e),{¢:(z)||t| < €} have transversal and
complementary tangent spaces.

11.6 Mixing system: A dynamical system is mixing, if for any open, non empty sets U,V C
M, thereis T > 0s.t. o (U)NV #0 (¢t >T).

11.7 Ergodic measure: A measure pon M is ergodic if it is (i) invariant i.e. p(p:(A)) = p(A)
(i) indecomposable i.e. p = puy + ps with p; both invariant = pu; = 0 or uy = 0.



11.8 Discussion: future stationary measure . is (i) regular w.r.t Lebesgue in direction of W

(ii) singular in transverse directions

11.9 SRB: introduction: u ergodic. How does p* look like?

i 1 [t [ e oo = [ @5t

T—o0 1’

with coordinate transformation o = ¢_,(z) we get

fin 7 [t [ du@)ldet Do (0)] @) = [ di(@)1Ge)

=dpt
Dropping the function f
1 [T
—/ dps — dp™ () (weakly)
T Jo
1

dpuy () dpo () = h(w)dpo()

~ [det Dgy(¢—i(x))]

For t — oo: du; is regular with respect to Lebesgue only in direction of W}. Singular
transverse directions.

11.10 Preliminary guess for u being SRB: u is ergodic. Foliation of u: decompose u
global unstable manifolds (labelled by equivalence classes o € I)

= /1 fadm(a)

with g, is a measure on W and dm(«) is measure on .
Wrong: contradicts indecomposability.

—_

1.11 Definition of u being SRB: i is ergodic. Let S C M be small enough. Then S
Uaes Sa with So € W2(e) (a labels local unstable manifolds)

s = /Iuadm(a)

and f1,(d€) is absolutely continuous w.r.t. d§ on S,.

in

n

11.12 Entro roduction: entropy production p(z) averaged along trajectory ¢;(x) during

time T
1 [T/

pr(z) = ?/ & (¢e())dt
-T2
Note: time average over [—1/2,7/2] (in contrast to 9.2).

Mean entropy production in the stationary state
p+(pr) = piy(6) =t 04

11.13 Lemma (Ruelle): o, > 0 (as opposed to po(c) = 0).



11.14 Proof (sketch): Recall
1 /7
= lim — dt

T—o00

in the weak sense (i.e. to be applied to test function). Apply this to function &

T—o0 T—oo0 T T—oo 1’

14 (5) = lim % /0 dt u(5) =~ Jim L(S(T) = 5(0)) = — Tim ~S(ur)
=—S(t)

Now, for any du(x) = w(x)dx

S(w) = —/dxw(:z:) logw(x) = /dazw(x) log w(lx) < log (/M dxw(x) (13;)) = log | M|
Here we used: if f is concave, then (f(-)) < f({)). Finally

. . log |M\
> = =
,u+(0) Thm

0

11.15: pr(z) > o4 more than mean; pr(z) < o, less than mean.
Probability of observing an entropy production rate pr(z) € [p, p + dp|

mr(p)dp = p{x € M|pr(z) € [p,p + dpl}

Note: not time-symmetric measure .

11.16 Theorem (Gallavotti, Cohen): Anosov system, mixing, reversible. Then

mr(p) ~ oPT
mr(—p)

Note: this is not an exact result, but a limiting statement. More precisely:

. WT(p)
lim — log ———— =
T e T 08 7r(—p)

11.17 Remarks: 1) Note universal character of law: no parameters to be adjusted (cfr. TdS =
dU + pdV in eq. stat. mechanics)

2) Proof makes use of Markov partitions

3) Connection with Onsager relations

4) Numerical and physical experiments confirm this fluctuation relation.



Part I11

Open Quantum Systems



Lecture 12

12.1: H, = H, H, Hilbert spaces (H will describe the system, Ho will describe auxiliary system

reservoir,...)). p arbitrarily linear map H — H (p € L(H)), but think of p as a density matrix
p=p* >0, trp=1)

~

12.2 Quantum operations Quantum operation: ¢ : L(H) — L(H)

12.3 Examples of quantum operations:
i) Evolution: U unitary; ¢ : p — UpU*

ii) Projective measurement (von Neumann): {P;}; resolution of identity (P = P, P,P; =

Py, > P =1); ¢ : p — Y. PipP,= post-measurement state (non selective measurement)
Alternatively (selective measurement): ¢ : p — P;pP; if outcome i occurs (with probability
tr(pF;)).

iii) (generalizes i) & ii)) POVM = positive operator valued measure {F;}; F; > 0>, F; = 1 Then
outcome: Post measurement state: provided additional structure is given, namely F; = MM,
then ¢ : p — >, M;pM; (non selective) or ¢ : p — M;pM; (selective, if outcome is ¢ with
probability tr(M;pM}) = tr(pF;))

iv) Adjoining an uncorrelated system. State py on Ho (distinguished, py > 0, trpy = 1)
¢:H—=HRH,p—= p& po

v) Forgetting part of a system ¢ : H ® Ha — H, p — trap (partial trace trop € H is defined by
tr((trzp) A1) = tr(p - (A4 ® 1))

12.4 General features: All maps ¢ are i) linear ii) positive i.e. p > 0 = ¢(p) > 0 iii) trace
preserving i.e. tr(¢(p) = tr(p), except for selective measurements.

as by the way follows from the structure (to be shown): ¢(p) = >, AipAr,> . AfA; = 1 with
A; : H— H ® Hy (possibily with Hy = C: H Q@ Hy = H)

12.5 Summary POVM: POVM’s result from indirect measurement (i.e. measurement on an-
cilla)

12.6: POVM: ¢ : L(H) — L(H), ¢ = ¢(p) = >, MipM; (Krans representation). What
properties characterise the existence of such a representation? Seen: linear, trace-preserving
and positive are necessary. Not sufficient for a Krans representation!

12.7 Definitions: ¢ : L(H) — L(H) is m-positive (m = 1,2,3,...) if ¢ : L(H ® C")
L(H®C™) defined by ¢(p@0) = ¢(p) @0 is positive; ¢ is completely positive if it is m-positive
for all m.

12.8 Remarks: 1) If ¢ has POVM = Krans representation, then ¢ is completely positive.
Indeed: ¢(p) = > ,(M; ® I)p(M; ® 1)

2) pe LHRC™) = L(H)® L(C™) may be written as p = 3| pi; @ i) (j| with (pi; € L(H)).
Then .
¢ 1 (pij)iier = (9(pig))ii=1



Fact: there are linear trace-preserving positive maps ¢, such that ¢ is not 2-positive.

Example: ¢(p) = p? with H = C? is not 2-positive.
- Linearity, trace-preserving are triviaL -
- Positive? (o, p"v) = (pT, @) = (p*¥, @) = (¢, pp)
- 2-positive? Not. Take for example

v

=-not positive

12.9 Theorem (Krans, 1970): Let ¢ : £L(H) — L(#) be linear and completely positive.

Then ¢ has a Krans representation
o(p) =D MipM;

for some M; : H — H. If ¢ is moreover trace-preserving, then » . MM, = 1 (other direction:
already seen).

12.10 Semigroups: Recall: If U, is a group (in t) of unitaries, then

dU,

e B o1
dt !

t=0

with H* = H (and viceversa: H are generators of group). Uy are invertible: U = U_;. Note:
¢ need not to be invertible. Thus consider semigroups ¢, : L(H) — L(H) with ¢y = ¢y 0 Ps
(t,s > 0) and ¢y = id. Generator (Lindltadian):

_ 4%

L:= = cL(H) — L(H)

t=0

12.11 Theorem (Gorimi, Kossakowski, Sudavskan; Lindltad): The generator of a trace-

preserving, completely positive semigroup is of the form
L(p) = =ilH,p] + Y (Tapls = 5{p.TeTa})

with H* = H and some I',,. The converse is also true.



Lecture 13

13.1 POVM and the gradual collapse of wavefunctions: Recall: projective measurements
({ P} resolution of the identity) p — p' = P,pP;/tr(P,p) if outcome is i (collapse).

Comments: - repetition of measurement does not change state further
- If P = |¥;)(,| (1- dimensional projection), then p’ = |W,;)(¥;| (pure)

Di Di 1

—

i i

13.2 Examples: 1) Spin 1/2: resolution of identity is Py + P, = 1; apparatus is Stern-Gerlach
2) E.m. field in a cavity (enough small such that modes do not form a continuum; focus on a
single mode). N=number operator (number of photons in that mode) = > ° nP,; resolution
of identity: Y~ P, = 1. What is the apparatus which does the job?

field ionisation

RF, %-PUIS(f n , ‘ RF, 3-pulse  detector
o N Gk ), 2 +e)
13.3 Rydberg atoms: Rydberg atoms (circular levels | = m = n — 1 (1 is maximal)) with
n=>51 (|4+)) and n =50 (|]—)) (2-level system)
- long lifetime
- transition frequency wy = w + § (w frequency of the mode)
- Bloch sphere (visualisation)
N =|+ +)

—— s+ +1-)

13.4 Atom in cavity: Jaynes-Cummings model:

huw h
H = 7002 + hwa*a + 7g(a0+ +a'o_)
on H ® C? (Basis: {|n) ® |[£)}). H leaves |n,+),|n + 1, —) invariant.
- Eigenvalues:
h
Ef = hw(n+1/2) + 5\/52 +(n+1)g2
- For g =0:

hw(n+1/2) + 26 = hwn + 120, In, +)

+ _ —
En(g_o)_{hw(n_i_l/Q)_g(S:hw(n‘i‘l)—%y |n+1a_>



-For g << ¢:

+ + hg*(n +1)
Er =E-( _O)i—45
In the cavity g = g(t). Eigenvector follows adiabatically
hig? (n+1)
In, +) N In, +)
ho | <
|n7 _> N |n’ _>

Quantum Non-demolition: |n) preserved.
Set o = fgzg')dt. Phase shift between |n,+): ¢(n) = (n + 1/2)¢o Thus ¢g: phase shift per
photon.

13.5 Pick parameter such that 2¢p, = %—g, e.g. ¢ =4 (— can only detect photons modulo 8).

Pick 6. Equatorial plane of Bloch sphere

@ .

Measure (projectively) whether state is |0, 0) or |0, 1) (actually: after suitable 7/2-pulse whether
is |+) or |—)).

n==~06

Schematically
7+ +1-)) =10,0) Unl0,0)f Do
proj. meas. ——
U unitary
p o
In) n)

U(ln) © 10.0)) = |n) @ (U]0,0))
por i = 3 trea (Bl (p @ 10,0)(0,00U7 Fpy) = 37 (0, 51U (p @10, 0)(0, 0)) U6, 5

(non-selective) Py s = |6, 5)(0, s|.

(nlp|m) =Y {0, 5Un[0,0) (n|plm)(0,0[U}, 6, 5).

s=0,1
For short
p = M,pM? <+ is POVM
s=0,1
with M, diagonal in n
M, = diag({0, s|U,|0,0)

E.g. s =0: cos (%0_9). So: My = cos (ngo — g), M, = sin (Ngoo — g), etc.



13.6 Note: If p is diagonal in N (as resulting from hypothetical proj. measurement) then
[p, M| = 0, whence p' = p.

13.7 Example: 1) If 6 = 32¢, & s = 0 comes out, then
n=20,1,2,3 are favoured
n =4,5,6,7 are unfavoured
But no n is sure (unlike proj. measurement)
2) If § =0, then n = 2 and n = 6 cannot be discriminated (coherent superposition there of are
preserved).

13.8 Another reading of POVM: selective

, MspM;
r= tr(MspM?)
We have
=p(n) =p(0,s|n)
—N— ——N——
, (nlpln) (0, s|U,|0,0)]? p(n)p(8, s|n)
(nlo'In) . p(nlf,5) = PRI (Beye
=p(n|0,s) —

=>, p(n)p(0,s)=p(0,s)
/

The outcome s (for picked ) changes prob. distr. p(n) — p(nl|f, s). By repeated (random) #'s
distribution p gradually collapses.
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