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Exercise 2

In Exercise 1 we saw that the Langevin equation is a powerful tool for the investigation
a particle moving in a fluid by using a stochastic function £(¢), a microscopic quantity.
However, there is another access to the problem based on macroscopic terminology, the
Fokker-Planck equation.

Given a probability distribution P(zg, to) for the location of a single particle at ¢ = ¢y, the
Fokker-Planck equation determines the evolution of P(x,t) for ¢t > ty,. A simple version
of the Fokker-Planck equation is given by
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where A(z,t) is denoted as the drift term and B(z, t) is the diffusion term. In the following,
we want to derive it for a simple model.
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Exercise 2.1 Random Walk

We want to derive the Fokker-Planck equation and its solution for a simple model, the so-
called random-walk model. This model consists of a particle moving in a (for simplicity)
one dimensional lattice (x;11 — x; = a) and in discrete time steps ¢; (tj11 —t; = 7). At
each time step the particle can hop with equal probability p_, = p, = p = 1/2 either to
the left hand or to the right hand side, see Fig. 1.

P P—
/\ /\
) [ ] )
Ti—1 Z; Lit+1

Figure 1: Hopping of a particle from z; to x;_; with probability p. or to x;,; with p_,.

The probability distribution P(z;,t;;x0,to) of the particle satisfies the conditions

P(flfhto;xo,to) = 6xi,xo (2)
> Platyxe,ty) = 1 (3)

where Eq. (2) fixes the initial condition at ¢; = ¢, and Eq. (3) is due to particle number
conservation.
It is not hard to see that the time evolution is given by

P(xi t; +T;20,t0) = P(xi-1,tj;20,t0) - p— + P(xig1, 45,20, 1) - Dee

(P(xi-1,tj; w0, t0) + P41, 5 o, o). (4)
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Verify that P fulfills the equation
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{6{ — ZAG:| P(l’i,tj;llf(),to) = 0 (5)

where the operators 9] and A, are defined as

f(l‘iatj—o—l; .o ) — f(l’z,tj, .. )

o Flastis..) — . (6)
1
Aaf(l’i,tj; ce ) = g [f(l’i+17tj; .. ) + f({L‘Z'_l, tj, cee ) - 2f<£(7z,t], ce )} . (7)
Show that P(z;,t;;x0,t0) is given by
w/a dk e
P(x;,tj;20,t0) = / —(cos ka)t” o/ gik(zi—z0) (8)
—7/a 2m

by solving Eq. (4).

Hint: Work in Fourier space and use

w/a dk '
P(xi,t5520,t0) :/ 2—P(k,tj;$o,to)€lkxi (9)
—n/a 4T
where P(k,ty;zo,t0) is defined by
P(k,tj;xo,to) = ZP(.%‘i,tj;xo,to)e_ikri. (10)

Calculate the continuum limit (e — 0,7 — 0) of Eq. (5) and (8) provided that
a®/21 = D is kept constant.

Hint: Expand cosz ~ 1 — 22/2 and use the identity e” = limy_,o (1 + z/N)".

Now let’s assume that there is an inbalance in the hopping, i.e. we have A\ > 0 such
that . .
p—>:§(1+)‘)> p<—:§(1_)‘)- (11)

Introduce the parameter ¢ = ya/7 and find the corresponding partial differential
equation (in the continuum limit) for this case!

Solve the differential equation using the ansatz

Pnew(myt; Zo, tO) = P(ZE - f(t)7t7 I07t0) (12>

where P is the solution of (c).



