Sheet VI

Due: week of November 5

We consider a perfect fluid in Minkowski spacetime. First we recall the setting from last week's lecture. The equations of motion of the fluid are the conservation laws

$$\nabla_{\mu}T^{\mu\nu} = 0, \tag{1}$$

$$\nabla_{\mu}I^{\mu} = 0, \tag{2}$$

where $T^{\mu\nu}$ is the energy momentum stress tensor of a perfect fluid

$$T^{\mu\nu} = \rho u^{\mu} u^{\nu} + p \left((g^{-1})^{\mu\nu} + u^{\mu} u^{\nu} \right) \tag{3}$$

and I^{μ} is the particle current

$$I^{\mu} = nu^{\mu}.\tag{4}$$

Here ρ is the energy per unit volume, u^{μ} is the fluid four-velocity (a future-directed unit time-like vectorfield), p denotes the pressure and n is the number of particles per unit volume. In addition we have the equation of state which expresses the energy per particle E as a function of the volume per particle V and the entropy per particle S

$$E = E(V, S). (5)$$

According to the first law of thermodynamics the pressure p and the temperature θ are then given by

$$dE = -pdV + \theta dS. \tag{6}$$

We also have the relations

$$\rho = \frac{E}{V}, \qquad n = \frac{1}{V}. \tag{7}$$

For the following questions use rectangular coordinates.

Question 1 [Nonrelativistic limit of conservation laws]: Recall that

$$E = Mc^2 + U, (8)$$

where M is the particle mass and U is the internal energy per particle.

(i) Derive in the nonrelativistic limit the equation of the conservation of mass

$$\frac{\partial \mu}{\partial t} + \frac{\partial (\mu v^i)}{\partial x^i} = 0, \tag{9}$$

where $\mu = M/V$ is the mass density and v is the three-velocity according to

$$u^{0} = \frac{1}{\sqrt{1 - |v|^{2}/c^{2}}}, \qquad u^{i} = \frac{v^{i}/c}{\sqrt{1 - |v|^{2}/c^{2}}}.$$
 (10)

(ii) Derive in the nonrelativistic limit the equation of the conservation of energy

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot f = 0, \tag{11}$$

where ε is the total energy density given by

$$\varepsilon = \frac{1}{2}\mu|v|^2 + u. \tag{12}$$

Here u = U/V is the internal energy per unit volume. The three-vector f is the total energy flux given by

$$f^i = (\varepsilon + p)v^i. (13)$$

Hint: Use the following combination of (1) and (2)

$$\nabla_{\mu} \left(T^{0\mu} - Mc^2 I^{\mu} \right) = 0. \tag{14}$$

Question 2 [Adiabatic condition]: Use (2) to show that the u-component of (1), i.e.

$$u_{\mu}\nabla_{\nu}T^{\mu\nu} = 0, \tag{15}$$

is the adiabatic condition

$$u^{\mu}\partial_{\mu}S = 0. \tag{16}$$

Question 3 [Pressureless fluid]: Show that if p = 0 the integral curves of u are timelike geodesics.