Operators and function objects

An Introduction to C++

Part 5

Operators
Function objects
More about templates

Review: what are classes?

Classes are collections of
@ functions
& data
@ types

® representing one concept

@ These “members” can be split into
@ public, accessible interface to the outside
@ should not be modified later!

@ private, hidden representation of the concept
@ can be changed without breaking any program using the class

@ this is called “data hiding”

@ Objects of this type can be modified only by these member
functions -> easier debugging

Programming techniques for scientific

simulations

Week 5

Operators and function objects Week 5

Special members

@ Constructors
@ initialize an object
@ same name as class
@ Destructors
@ do any necessary cleanup work when object is destroyed
@ have the class name prefixed by ~
€ Conversion of object A to B
@ two options:
@ constructor of B taking A as argument

@ conversion operator to type B in A:
@ operator B();

€ Operators
©® Default versions exist for some of these

Operators as functions

@ Most operators can be redefined for new classes
€ Same as functions, with function name:

operator symbol(...)

€ Example:

Matrix A,B,C;
C=A+B;

@ is converted to
@ either C.operator=(A.operator+(B));
®orC.operator= (operator+(A,B));

Programming techniques for scientific
simulations 2

Operators and function objects

Assignment operators

The assignment operators =, +=, -=, *=, /=, "=, &=, |=, %=
@ can only be implemented as member functions
@ should always return a const reference to allow expressions like

a=b=c;
a=b+=c;

€ Example:

®class Point {
double x ,y ;
public:

const Pointé& operator+=(const Pointé& rhs) {
X += rhs.x ;
y: += rhs.y:;
return *this;

}

}:

Symmetric operators

€ Symmetric operators, e.g. +, -, ... are best implemented as free functions
@ Either the simple-minded way

@ Point operator+(const Point& x, const Pointé& y) |
Point result(x.x() + yv.x(), x.v() + yv.v());
return result;

}

@ Or the elegant way

@ Point operator+ (Point x, const Point& y) {
return x+= y;

}

Programming techniques for scientific

simulations

Week 5

Operators and function objects

Extending classes with operators

@ Extensions to existing classes can only be implemented as free functions

€ Example: extending the iostream library

@ std::ostreams operator << (std::ostreamé& out,
const Pointé& p) {
out << “(“ << p.x() << ¥, “<<p.y() << “)7;
return out;

€ We can now print a Point:

¢ Point p;
std::cout << “The point is “ << p << std::endl;

More comments about operators

® 2 a; ++a; uses
const A& A::operator++();
Oor const A& operator++ (A&) ;
® 2 a; at++; uses
A A::operator++(int);
or A operator++ (A&, int);
The additional int argument is just to distinguish the two

@ 2 b; b=a; uses the assignment
const A& A::operator=(const A&);

® 2 b=a; and 2 b (a); both use the copy constructor
A::A(const A&);

Programming techniques for scientific

simulations

Week 5

Operators and function objects

Conversion operators

@ conversionof A -> Basin:
@®2 a; B b=B(a);

@ can be implemented in two ways
& constructor B::B(const A&);
& conversion operator A::operator B();

Automatic conversions:
& char -> int
@ unsigned -> signed
& short -> int -> long
& float -> double -> long double
@ Integer -> floating point
@ asin: double x=4;

Array subscript operator: operator|[]

® In an array or vector class we want to be use the array subscript
syntax:
@®Array a;
for (int i=0;i<a.size () ;++1i)
std::cout << al[i] << std::endl;

€ We need to implement both const and non-const operator|[]:

®class Array {
public:

double operator[] (unsigned int i) const
{ return pl[il;}
double& operator([] (unsigned int 1i)
{ return plil;}
private:
double* p;
ti

Programming techniques for scientific

simulations

Week 5

Operators and function objects Week 5

Pointer operators: operator* and operator->

€ We will get to know classes acting like pointers
@ lterators
€ Smart pointers (e.g. reference counted or checked pointers)

@ In such classes we want to use the pointer syntax
® p
®p->f()

€ We need to implement const and non-const versions of these operators:

® class P {
double* operator->() { return p ;}
const double* operator->() const { return p ;}
doubles operator*() { return *p ;} o
const doubleé& operator* () const { return *p ;}
private: B
double* p ;

}i

The function call operator: operator ()

€ We sometimes want to use an object like a function, e..g

& Potential V;
double distance;
std::cout << V(distance);

@ This works only if Potential is a function pointer, or if we define the
function call operator:

@ class Potential {
double operator () (double d) { return 1./d;}

}i

@ Don’t get confused by the two pairs of ()()
@ The first is the name of the operator
@ The second is the argument list

Programming techniques for scientific
simulations 6

Operators and function objects Week 5

References as return types

@ Warning! What is wrong?

typedef Array<int> IA;

IA& operator+(const IA& x, const IA& y) |
IA result=x;
result+=y;
return result;

}

IA a,b,c;
c=a+b;

@ Problem: we return reference to temporary object!
€ Very dangerous, will in most cases crash the program

@ Correct version copies the result
IA operator+(const IA& x, const IA& y) {
IA result=x;
xt=y;
return result;

}

Template specialization

@ Consider our Array<T> @ template <class T>
@ An array of size n takes class Array {
n*sizeof (T) bytes /I generic implementation
@ Consider Array<bool> }i
@ An array of size n takes
n*sizeof (T) = n bytes @ template <>
class Array<bool> {
@ An optimized implementation just /loptimized version for bool
needs one bit!
@ Array<bool> (n) would need };

only n/8 bytes

€ How can we define an optimized
version for bool?

€ Solution: template specialization

Programming techniques for scientific
simulations 7

Operators and function objects

Traits types

€ We want to allow the addition of two arrays:

@ template <class T>
Array<T> operator+ (const Array<T>&, const Array<T>&)

€ How do we add two different arrays?
Array<int> + Array<double> makes sense!

@ template <class T, class U>
Array<?> operator +(const Array<T>&, const Array<U>&)

€ What is the result type?
€ We want to calculate with types!

€ The solution is a technique called traits. Used quite often
€ numeric_limits traits class for numeric data types

@ can also be used here:

& template <class T, class U>
Array< typename sum_type<T,U>::type >
operator +(const Array<T>&, const Array<U>&)

Traits types (continued)

€ We want to use traits like

@® template <class T, class U>
Array< typename sum_type<T,U>::type >
operator +(const Array<T>&, const Array<U>&)

@ The typename keyword is needed with template dependent types

@ Definition of number traits:

¢ empty template type to trigger error messages if used
@ template< class T, class U > class sum_type {};

@ Partially specialized valid templates:
@ template <class T> struct sum_type<T,T> {typedef T type;};

@ Fully specialized valid templates:
@ template <> struct sum type<double, float> {typedef double type;};
@ template <> struct sum_type<float,double> {typedef double type;};
@ template <> struct sum_type<float,int> {typedef float type;};
@ template <> struct sum type<int, float> {typedef float type;};

Programming techniques for scientific

simulations

Week 5

Operators and function objects

typename

@ The keyword typename is needed here so that C++ knows the
member is a type and not a variable or function.

template <class T, class U>
Array< typename sum type<T,U>::type >
operator +(const Array<T>&, const Array<uU>&)

@ This is required to parse the program code correctly — it would not
be able to check the syntax otherwise

Old style traits

”

@ In C++98 traits were big “blobs”:
template<>
struct numeric limits<int> {
static const bool is specialized = true;
static const bool is integer = true;

static const bool is signed = true;

@ Later it was realized that this was ugly:
® A traits class is a “meta function”, a function operating on types

@ A blob like numeric limits takes one argument, and returns many
different values

@ This is not the usual design for functions!

Programming techniques for scientific

simulations

Week 5

Operators and function objects

New style traits

@ Since C++03 all new traits are single-valued functions
@ Types are returned as the type member:

template<class T>

struct sum type { typedef T type; };

template<>
struct sum type<int> { typedef double type; };

@ Constant values are returned as the value member:

template<class T>

struct is integral { static const bool value=false; };

template<>

struct is integral<int> { static const bool value=true; };

Another application of traits

@ Imagine an average() function: @ The better version:

template <class T> template <class T>

typename average type<T>::type
T average (const Array<T>& v) { yp v ge_typ yp

average (const Array<T>& v) {

T sum; typename average type<T>::type sum;
for (int n=0;n<v.size();++n) for (int n=0;n<v.size();++n)

sum += v[n]; sum += v[n];
return sum/v.size(); return sum/v.size();

}
: . . /I the general traits type:
€ Has problems with Array<int>, as template <class >

the average is in general a Stiuctdaze;ageftype t
. . ede ey
floating point number: . . .
®v=(14.3) /I the special cases:
template<>

@ Average would be int(8/3)=2

struct average_type <int> {
typedef double type;};

@ Solution: traits 1 repeat for all integer types

Programming techniques for scientific
simulations

Week 5

10

Operators and function objects

An automatic solution for all integral types

template <class T> struct average_type {
typedef typename

}i

/I the first helper:

template<class T, bool F>

struct helperl { typedef T type };

/I the first helper if numeric_limits is defined: a partial specialization
template<class T>
struct helperl<T, true> {

typedef typename

helper2<T, std::numeric limits<T>::is integer>

i
/I the second helper:
template<class T, bool F>
struct helper2 { typedef T type };

/I the second helper if the type is integer: a partial specialization
template<class T>
struct helper2<T, true> { typedef double type;}

helperl<T, std::numeric_limits<T>::is_specialized>::type type;

::type type;

Procedural programming

@ double integrate(double (*f) (double)),

double result=0;

double x=a;

double dx=(b-a) /N;

for (unsigned int i=0; i<N; ++i, x+=dx)
result +=f (xX);

return result*dx;

® double func(double x) {return x*sin(x);}
cout << integrate(func,0,1,100);

@ same as in C, Fortran, etc.

double a, double b, unsigned int N)

Programming techniques for scientific
simulations

Week 5

11

Operators and function objects

Generic programming

® template <class T, class F>
T integrate(F £, T a, T b, unsigned int N)
{
T result=T(0);
T x=a;
T dx=(b-a) /N;
for (unsigned int i=0; i<N; ++i, x+=dx)
result +=f (xX);
return result*dx;

® inline double func(double x) {return x*sin(x);}
std::cout << integrate(func,0.,1.,100);

@ allows inlining!
@ works for any type T and F!

Function objects

4 Assume a function with parameters: f(x;A) =exp(—Ax)

@ double func(double x, double lambda) {
return exp(-lambda*x);

}
€ cannot be used with integrate template!

@ Solution: use a function object

@ class MyFunc {
const double lambda;

public:
MyFunc (double 1) : lambda(l) {}
double operator () (double x) {return exp(-lambda*x);}

}i
@ MyFunc f(3.5)
integrate(f,0.,1.,1000);

@ uses object of type MyFunc like a function!
@ Very useful and widely used technique

Programming techniques for scientific

simulations

Week 5

12

