An Introduction to Parallel Computing

Parallel computing

Cores per Socket - Systems Share

¢ What is parallel computing?

¢ Where does one need parallel
computing?

¢ Who needs parallel
computing?

¢ Application areas on TS

top500.org

Share

1995 2000 2005
[0 3 12 23 16 36 1 1 M2 16
B 108 [l 235 [Wllo 2 ls 76

source: top500.org

Let’s do parallel computing!

¢ Assume every seat in the room is a “computational core”
¢ How do we distribute N pieces of paper in parallel?

¢ How do we sum together numbers?

What were the key ideas?

The parallel idea

¢ Sequential:

¢ Problem is split into pieces
¢ Instructions are executed one H

after the other by the CPU
instructions

¢ Parallel: ﬁ
¢ Problem is split into many ————————-— — — — —Iv - _
independents sequences w eooor
¢ Many CPUs executes the

sequences concu _._.msﬁ_v\ problem instructions
il I-c=

——
N 3 2 t

¢ Not always easy to split the
problem!

Types of architectures - taxonomy

¢ ._um.X0303< introduced M. _H_<33 in 1966 [Proc. IEEE, vol.54, no.12, pp. 1901- 1909, Dec. 1966]

data stream

£
S
5 SISD SIMD
c
8
3!
= MISD MIMD
A
=

¢ Today we cover parallel programing in terms of MIMD systems

Types of architectures - taxonomy

¢ SISD
¢ single instruction - single data: an ordinary serial CPU

¢ SIMD
¢ single instruction - multiple data
¢ all CPUs perform exactly the same operation on different data
¢ was often used in the first parallel machines, now uncommon
¢ Altivec (PowerPC) and SSE (Pentium) are SIMD units

¢ GPU are the new implementation of SIMD architectures
¢ programming environment: CUDA, OpenCL

¢ MIMD
¢ multiple instruction - multiple data

¢ nowadays the most common type - all CPUs can run independently,
doing different tasks

Shared memory architectures

¢ share a common main memory

¢ are easy to program since CPUT == s ull cPUs
all CPUs access the same data HOE
R O
E R
¢ Disadvantages RS IS e IS P
¢ scales well only to about 48 CPUs

¢ concurrent access to memory is a problem

¢ on PCs and workstations:
¢ all CPUs share a path to the memory
¢ one CPU that accesses the memory blocks all others

¢ on vector computers like Crays, etc:
4 all CPUs have a full path to the memory
¢ no interference between CPUs!

Distributed memory architectures

¢ each CPU has access

. CPU 1 [~e» CPU 2 == CPU 3 === CPU 4
only to its local memory

[}
\ |

¢ access to data of other
local local local loca

CPUs 03_< U< memory memory memory memory

communicating with these CPUs

¢ Disadvantages

¢ access to remote memory is slow
¢ harder to program efficiently

¢ Advantage
¢ much much cheaper

Parallel machines

¢ SIMD style
¢ Old machines: MasPar, Thinking Machines 1 and 2

¢ heterogeneous systems (CPU+GPU) appearing again in top500.0rg
¢ Cray XK7, Tianhe-1A

¢ MIMD machines
¢ Cray XE6, IBM BlueGene, Fujitsu K
¢ achieve more than 10 Petaflops performance!
¢ fastest machines on the world

¢ Beowulf clusters
¢ clusters of PCs running Linux, best price-performance ratio
¢ pioneered by physicists at NASA, Los Alamos, Sandia, ...
¢ 20’000-CPU cluster is available at ETH

10

ETH Brutus cluster

¢ Heterogeneous system with a total of 19
1’000 compute nodes

¢ Computation power of 200 Teraflops

760 processor cores in ca.

¢ Shared memory
programming model on nodes

¢ Distributed memory
programming model across nodes

¢ Ranked the 88th fastest computer
in the world in November 2009

11

CSCS - Swiss National Supercomputing Centre

CRAY XE6 - Rosa:

2’992 AMD 16-core Opteron @ 2.1 GHz --> 47’872 cores
46 TB DDR2 RAM

290 TB Disk

9.6 GB/s interconnect bandwidth

Computation power of 402 Teraflop/s

12

Cluster vs. Supercomputer

¢ What is the real difference?

13

Cluster vs. Supercomputer

Cray XE6

14

Cluster vs. Supercomputer

¢ Network is the main part of a Supercomputer!

15

Network topologies

¢ all-to-all:

¢ needs N(N-1)/2 connections, but fastest communication
¢ Hypercube

¢ nodes on edges of hypercube, N log,N connections
¢ 3D crossbar

¢ nodes on cube, 6N connections, used in Cray, IBM BlueGene
¢ 2D crossbar

¢ nodes on square, 4N connections, used in older supercomputers
¢ Ring

¢ 2N connections, slow connection but appropriate for some problems
¢ Star

¢ used often in Beowulf clusters, nodes connected to a switch

16

Hypercube interconnect

¢ Network consists of p = 24 processors
¢ example: 16 processors lies on the edges of a 4-dim hypercube

17

Coarse Grain Parallelism

¢ Parallelization can occur at many levels

¢ Coarse grain parallelization is simply running several independent
programs on different CPUs

¢ Can be used to simulate many different parameter sets like
¢ temperatures
¢ system sizes
¢ mutation rates

¢ This is very common in physics

¢ We just need an efficient queuing system

18

Medium Grain Parallelism

¢ For big problems we want to parallelize one program

¢ Medium grain parallelism makes use of the fact that some routines
can be performed independently

¢ This needs some extra programming work

19

Fine Grain Parallelism

¢ In order to scale to many hundreds of CPUs often fine grain
parallelism, within one function, is needed

¢ Example:

for (int j=0;j<N;+3j)

a[jl=b[jl+c[]];
could be split over M CPUs, each performing the summation on 1/M-
th of the vectors

¢ This can sometimes be done automatically by smart compilers

¢ usually only in simple for loops,
¢ and on shared memory machines

¢ In C++, libraries that can do this can be developed

20

Shared memory

21

OpenMP standard for shared memory architectures

¢ Home page: http://www.openmp.org

¢ Contains the specification of the standard Oﬂvmjgv

including many examples

¢ We will look at the C/C++ standard

¢ Semi-automatic parallelization using directives

¢ A directive is written as a line before the statement or block of
statements:

#pragma omp directive

¢ Some auxiliary function calls

22

One additional line of code — perfect scaling

¢ Serial:

| const std::size_t nsamples = 1E10;

| double mean = 0.;

“mﬁauusﬁpooww rng(42);

| mean = calcpi4(rng, nsamples/double(nthreads)+0.5);

double error = std::sqrt(1./(nsamples-1.) *x (mean — meanxmean));
std::cout << "pi = " << 4kmean << " +/- " << 4xerror << std::endl;

¢ Parallel:

,mmzmﬁ std::size_t nsamples = 1E10;
 double mean = 0.;
| #pragma omp parallel reduction(+:mean)
I {
std::mt19937 rng(rank);
mean = calcpi4(rng, nsamples/double(nthreads)+0.5);
}
mean /= nthreads;

double error = std::sqrt(1./(nsamples-1.) * (mean — meanxmean));
std::cout << "pi = " << 4xmean << " +/- " << 4xerror << std::endl;

One additional line of code — perfect scaling

50
40
5 30
3
()
()]
o 20
10
0
0 10 20 30 40
cores

50

23

24

Parallel region

| #include <iostream>

I #include <omp.h>
|
|

Iint main()

{
#pragma omp parallel
{
// now we execute this block in multiple threads
std::cout << "I am thread " << omp_get_thread_num()
<< " of " << omp_get_num_threads() << " threads." << std::endl;
}
¥

¢ Threads are spawn at the beginning of the parallel block
¢ At the end of the parallel block, the code is again serial

master thread

threads

parallel region

& threads

threads

parallel region parallel region

image from: https://computing.linl.gov/tutorials/openMP.

25

Parallel sum with OpenMP

¢ We want to perform the sum cl[i] = a[i] + b[i] in parallel

| #include <iostream>
| #include <omp.h>

1

| int main()

{

unsigned long const N

for (std::size_t i = 0;

Gl = oAl = BIAls

std::vector<int> a(N, 1.

26

Parallel sum with OpenMP

¢ We want to perform the sum cl[i] = a[i] + b[i] in parallel

¢ all threads are now running the full loop

| #include <iostream>

| #include <omp.h>

1

| int main()

[{

unsigned long const N

= 100;
std::vector<int> a(N, 1.)

, b(N, 1.5), c(N);

#pragma omp parallel
{
for (std::size_t i = @; i < N; ++1i)
c[i] = alil + b[il;

Parallel sum with OpenMP

¢ We want to perform the sum cl[i] = a[i] + b[i] in parallel

¢ every thread work on different parts of the loop

| #include <iostream>
| #include <omp.h>
ﬁH:ﬁ main()

K

unsigned long const N

= 100;
std::vector<int> a(N, 1.)

, b(N, 1.5), c(N);

#pragma omp parallel
{
int t = omp_get_thread_num();
int nthreads = omp_get_num_threads();

long double const step = (nterms+0.51) / nthreads;
int stop = (t+1) * step;
for (std::size_t i = t *x step; i < stop; ++1i)

c[il = alil + blil;

Running a program with OpenMP

¢ Get sources from repository

¢ Compile the program
¢ g++ -fopenmp hello1.cpp -o hello1

¢ Run the program (as usual)
¢ /hellod
¢ it runs using the maximum number of threads

¢ The number of threads can be specified at run-time
¢ export OMP_NUM_THREADS=4
¢ /hellol

Parallel sum with OpenMP

¢ Since loop parallelization is very common, there is an automatic

shortcut

| #include <iostream>

| #include <omp.h>

1

[int main()

i

unsigned long const N
’

100;
std::vector<int> a(N)

1. ’ UAZ- H.mv~ nAZV“
#pragma omp parallel
{
#pragma omp for
for (std::size_t i = 0; i < N; ++1i)
cl[i]l = alil + b[il;

29

30

Parallel sum with OpenMP

¢ Since loop parallelization is very common, there is an automatic
shortcut
¢ Even shorter!

| #include <iostream>
! #include <omp.h>

1

| int main()

1 {

unsigned long const N

= 100;
std::vector<int> a(N, 1.)

, b(N, 1.5), c(N);

#pragma omp parallel for
for (std::size_t i = 0; i < N; ++i)
clil = alil + blil;

DOT product with OpenMP

¢ Let’s parallelize similar to the previous example.

[#include <iostream>
| #include <omp.h>
|

{ int main()
i {
unsigned long const N = 100;
std::vector<int> a(N, 2.), b(N, 1.5);
double sum = 0.;
#pragma omp parallel for
for (std::size_t i = 0; i < N; ++1i)
sum += a[il * b[il;

std::cout << "Dot product is" << sum << std::endl;

¢ What is the output?

Race condition

¢ Sequential execution

¢ Multithreaded execution
¢ (one of the many)

Thread 1 i=

0

read i - 0
increment value 0
write back i - 1
read i — 1
increment value 1
write back i - 2

Thread 1 Thread 2 i=

0

read i ~| 0
increment value 0
read i ~| 0

write back i = 1
increment value 1

write back i = 1

DOT product with OpenMP

33

¢ OpenMP critical sections are executed by one thread at a time

¢ it solves race conditions
¢ but it makes the code slower

[#include <iostream>

| #include <omp.h>
|

| int main()

| £

unsigned long const N
std::vector<int> a(N,

double sum = 0.;
#pragma omp parallel for
for (std::size_t i

#pragma omp critical
sum += alil * b[il;

00;
, b(N, 1.5);

0; i < N; ++i)

std::cout << "Dot product is" << sum << std::endl;

34

DOT product with OpenMP

¢ The sum can be performed in parallel in O(log(N)) complexity

¢ OpenMP has a shortcut for it

¢ #pragma omp for reduction(operator: variable)

| #include <iostream>
| #include <omp.h>
|

| int main()
{
unsigned long const N = 100;
std::vector<int> a(N, 2.), b(N, 1.5);

double sum = 0.;
#pragma omp parallel for reduction(+:sum)
for (std::size_t i = 0; i < N; ++1i)
sum += a[il * b[i];

std::cout << "Dot product is" << sum << std::endl;

Penna model with OpenMP

¢ How to parallelize the Population: :step() function?
wmowm 10vc~mﬁwo:""mﬁmqu
| {
| // Age all animals
for_each(begin(), end(), mem_fun_ref(&Animal::grow));

¢ Remember that with a Bidirectional iterator

' std::list<Animal> population;
| // init
| coo
typedef typename std::list<Animal>::iterator iterator;
iterator start = population.begin();
iterator itl ++start; // 0(1)
iterator it2 std::advance(start, n); // 0(n)

35

36

Penna model with OpenMP

¢ The usual OpenMP approach would perform similar to

I std::size_t step = population.size() / omp_get_num_threads();

”#Uﬂm@sm omp parallel

({

| std::size_t t = omp_get_thread_num();
iterator it = std::advance(population.begin(), stepxt);
iterator end = std::advance(population.begin(), stepx(t+1));
for(; it!=end; ++it)

it-—>grow();
}

¢ Terribly slow!

37

Penna model with OpenMP

¢ New idea, OpenMP tasks.

| #pragma omp parallel
| #pragma omp single nowait
w for(iterator it=population.begin(); it!= end(); ++it)
#pragma omp task
it->grow();

¢ Tasks are lightweight objects that get pushed into a task queue,
idle threads pull tasks from the queue
¢ Allow to parallelize irregular problems:
¢ unbounded loops
¢ recursive algorithms

¢ producer/consumer schemes
L4

38

Overview of OpenMP directives

¢ #pragma omp parallel

¢ Optional clauses:

if (scalar expression)

Only parallelize if the expression is true. Can be used to stop
parallelization if the work is too little

private (list)

The specified variables are thread-private

shared (list)

The specified variables are shared among all threads

default (shared | none)

Unspecified variables are shared or not

copyin (list)

Initialize private variables from the master thread

firstprivate (list)

A combination of private and copyin

reduction (operator: list)

Perform a reduction on the thread-local variables and assign it to
the master thread

num_threads (integer-expression) |Setthe number of threads

¢ Example:

f%vﬁm@sm omp parallel private(i) shared (n) if (n>10)
It

Overview of OpenMP directives

¢ #pragma omp for

¢ Optional clauses:

nowait There is no implicit barrier at the end of the for. Useful, e.g. if
there are two for loops in a parallel section.
ordered The same ordering as in the serial code can be enforced

collapse (n)

collapse n nested loops into one and parallelize it

schedule (type [,chunk])

specify the schedule for loop parallelization (see below)

¢ Scheduling options:

STATIC Loop iterations are divided into fixed chunks and assigned statically
DYNAMIC Loop iterations are divided into fixed chunks and assigned dynamically
whenever a thread finished with a chunk.
GUIDED Like dynamic but with decreasing chunk sizes.
The chunk parameter defines the minimum block size
RUNTIME decide at runtime depending on the OMP_SCHEDULE environment variable
AUTO decided by compiler and/or runtime system

More at http://www.openmp.org/mp-documents/OpenMP3.1.pdf

39

40

Overview of OpenMP auxilliary functions

¢ In header: #include <omp.h>
¢ omp get thread num() ... returns the number of the current thread
¢ omp set num threads(int) ... setsthe number of threads
¢ omp get num threads() ... returnsthe number of threads
¢ omp get max threads() returns the maximum number of threads
¢ omp get num procs() ... returns the number of processors used
¢ omp set dynamic(bool) ... enables/disables automic adjustment
of the number of threads
¢ omp get dynamic() ... returns if automatic adjustment is allowed
¢ All these functions work only with OpenMP. To make the code portable
use the following trick to e.g. enforce four threads if OpenMP is used:
#ifdef OPENMP
omp_set dynamic(false);
omp set num threads(4);
#endif
More at http://www.openmp.org/mp-documents/OpenMP3.1.pdf
41
OpenMP conclusions
¢ OpenMP is

¢ simple threading on shared memory platforms

¢ portable and standardized across many platforms and compilers

¢ supporting C/C++ and Fortran

¢ lean and ease, easy to use, augment code with compiler directives

¢ OpenMP is easy to use but is not

¢ checking for data dependencies, conflicts, race conditions, or
deadlocks

¢ giving you the best optimized code
¢ implemented in the same way on all compilers

42

OpenMP is much more than this

¢ We didn’t touch:
¢ parallel sections
¢ nested parallelism
¢ synchronization (barrier, nowait, etc.)
¢ worksharing constructs (single, master, etc.)

¢ More advanced lecture will have a more detailed view
¢ High Performance Computing for Science and Engineering

¢ Learn from examples
¢ http://www.openmp.org

Distributed memory

43

44

Message Passing on distributed memory architectures

CPU 1 == CPU 2 (<= CPU 3 (== CPU 4

A, \ A ‘W
/ | \ \
local local local local
memory memory memory memory

¢ On distributed machined we need to program the communication
between processes running on the CPUs (also called nodes)

¢ This is called message passing
¢ Vendor specific libraries have been replaced by the MPI standard

¢ If you know how to send Christmas greetings by postal mail you
know all you need to know

45

MPI standards

¢ Goals of the MPI standard:
¢ portable, efficient, easy to use
¢ works on distributed memory, shared memory and hybrid systems

¢ Versions of the MPI standard:

¢ MPI-1 was first finished in 1992, minor updates over the years (1.1,
1.2, 1.3)

¢ MPI-2 was first proposed 1998 and adds one-sided communication, I/
O, and creation of processes

¢ MPI-3 was finalized September 2012 and adds more features, in
particular non-blocking collective communication

¢ We will cover mainly MPI-1 since that is what is needed for most
codes

46

What is a message?

¢ A message is a block of data sent by one node to another

¢ It usually consists of
¢ pointer to buffer containing data
¢ length of data in the buffer
¢ a message tag, usually an integer identifying the type of message
¢ number of the destination node(s)
¢ number of the sender node
¢ optionally a data type

¢ The message is passed through the network from the sender to the
receiving node

47

Sending and receiving a message

¢ Aparallel “Hello World” program

¢ node 1 sends a string with tag 99 to node 0

¢ node 0 receives a string with tag 99 from node 1
and prints it

#include <iostream>

,%H:nﬁcam <string>

| #include <mpi.h>
,4
| int main(int argc, charxx argv) {
|
, MPI_Init(&argc, &argv);
int num;

MPI_Comm_rank(MPI_COMM_WORLD,&num);

if(num==0) { // master
MPI_Status status;
char txt[100];
MPI_Recv(txt,100,MPI_CHAR,1,99,MPI_COMM_WORLD,&status);
std::cout << txt << "\n";
+
else { // slave
std::string text="Hello world!";
MPI_Send(const_cast<chars>(text.c_str()),text.size()+1,MPI_CHAR,@,99,MPI_COMM_WORLD);
¥

MPI_Finalize();

48

The structure of an MPI program

¢ Include the header <mpi.h>
You need to initialize and terminate the MPI environment in your code.

¢ Note that you need to pass pointers to argc and argv. The MPI
environment might grab some command line options and return a
modified list of options.

2

| #include <mpi.h>
,H:ﬁ main(int argc, charxx argv) {
|

MPI_Init(&argc, &argv); // initialize the environment
.+« // do something
MPI_Finalize(); // clean up at the end

return 0;

v

49

Initialization and termination functions

¢ You've seen two of the five functions connected with setting up the
MPI environment.

int MPI Init(int*argc, char***argv);
// initializes the environment

int MPI Finalize()
// terminates the environment

int MPI_Abort(MPI_Comm comm, int errorcode);
// terminates all processes with the given error code

int MPI Initialized(int *flag)
// sets the flag to true if MPI has been initialized

int MPI Finalized(int *flag)
// sets the flag to true if MPI has been finalized

50

Obtaining the rank and size

¢ MPI numbers the processes inside communicators

¢ By default one communicator, MPI_COMM_WORLD is created containing all
processes.

| #include <iostream>
| #include <mpi.h>

| int main(int argc, charkxk argv) {

MPI_Init(&argc, &argv); _<__U_Ino—<__<_|/>\ox_lo

int rank; @
int size; @
MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD,&size);
std::cout << "I am rank " << rank <<
" of " << size << "." << std::endl;
MPI_Finalize();

| return 0;

51

Running the example using Open MPI: D-PHYS machines

¢ Get the sources from the repository

¢ Compile the program:
¢ mpicxx -o hellol hellol.cpp

¢ Run the program in parallel using 4 processes:

mpirun -np 4 ./a.out
am rank 1 of 4.
am rank 2 of 4.
am rank 0 of 4.
am rank 3 of 4.

HHHHW®

52

Things to do on your own machine

¢ Check if you already have a MPI installation
¢ which mpicc

¢ In case you need to install it, try Open MPI
¢ http://www.open-mpi.org
¢ example of the installation is provided on the lecture homepage

¢ To run it in parallel on more than one machine

¢ Setup automatic authentication
¢ Use .rhosts with rsh
¢ Use authorization keys with ssh (details on http:/nic.phys.ethz.ch)

¢ Prepare a file with the names of all PCs you want to use

¢ Give that file as argument to mpirun
¢ mpirun -hostfile <filename> (for Open MPI)

53

MPI_Send and MPI_Recv

¢ int MPI_Send(void* buf, int count, MPI Datatype type, int
dest, int tag, MPI Comm comm) ;

¢ buf ... buffer containing data

¢ count ... number of elements

¢ type ... datatype (MPI_BYTE is raw data)

¢ dest ... destination number

¢ tag ... message tag

¢ comm ... communicator, MPI_COMM_WORLD is default

¢ int MPI_Recv(void* buf, int count, MPI Datatype type, int
source, int tag, MPI Comm comm, MPI Status* status)

¢ MPI ANY SOURCE and MPI ANY TAG are wildcards
¢ count ... size of buffer available for message
¢ status ... returns information on the message

54

Probing for messages

¢ |Instead of directly receiving you can probe whether a message has arrived:

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)
// wait for a matching message to arrive

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag, MPI_Status *status)
// check if a message has arrived.

// flag is nonzero if there is a message waiting

int MPI_Get_count (MPI_Status *status, MPI Datatype datatype, int* count)
// gets the number of elements in the message waiting to be received

¢ The MPI_Status object can be queried for information about the message:

| MPI_Status status;
| int count;
ﬁ\\ wait for a message
| MPI_Probe(MPI_ANY_SOURCE, MPI_ANY_TAG, &status);
std::cout << "A message is waiting from " << status->MPI_SOURCE
<< "with tag " << status->MPI_TAG;

// get the element count
MPI_Get_count(&status, MPI_INT, &count)
std::cout << "and assuming it contains ints there are " << count << "elements";

55

Deadlocks: deadlockl.cpp, deadlock2.cpp

¢ Consider synchronous communication:

¢ process O:
ZlemmmbmAmQ~H~ZWHIUOGWbM~H~dm@~2wHIOOZZ|ZOWﬁUVn
EMHIWmO<AmQ~H~ZMH|UOGmﬁm~H~ﬁW@~ZwHIOOZZ|EOWhU~mmﬁmﬁCmvn

¢ process 1:
MPI_Ssend(&d,1,MPI DOUBLE,O0,tag,MPI COMM WORLD);
MPI_Recv(&d,1,MPI DOUBLE,0,tag,MPI COMM WORLD, &status);

¢ will deadlock as both wait for reception of message
¢ Solution:

¢ process O:
MPI_Recv(&d,count,MPI DOUBLE,1l,tag,MPI COMM WORLD, &status);
MPI_Ssend(&d,count,MPI DOUBLE,1l,tag,MPI_COMM WORLD) ;

¢ process 1:
MPI_Ssend(&d,count,MPI DOUBLE,0,tag,MPI COMM WORLD) ;
MPI_Recv(buf2,count,MPI DOUBLE,O0,tag,MPI COMM WORLD, &status);

¢ Check for this in your code!

56

Collective Communication

¢ Communication between many processes can be optimized

¢ simple form of broadcast
¢ step1:0->1
¢ step2:0->2
.
¢ stepN-1:0->N

¢ optimized broadcast
¢ step1:0->1
¢ step2:0->2,1->3
¢ step3:0->4,1->5,2->6,3->7
¢ step4:0->8,1->9,2->10,3->11,4->12,5->13,6 -> 14, ...

¢ Optimized version in log,(N) instead of N steps!

57

Types of collective communication

¢ Broadcast sends same data to all processes
¢ Scatter / Gather
¢ scatter: caller sends n-th portion of data to n-th process
¢ gather: caller receives n-th portion of data from n-th process
¢ All-gather
¢ everyone receives n-th portion of data from n-th process
¢ All-to-all

¢ n-th process sends k-th portion to process k and receives n-th portion
from process k; like a matrix transpose

¢ Reduce
¢ combines gather with operation (e.g. sum all portions)
¢ All-reduce, Reduce-scatter, ...
¢ Barrier: waits for all processes to call it; for synchronization

58

Scatter & Gather

¢ The scatter operation sends a different piece of data to each of the
ranks

¢ Example: take a vector and split it over the other ranks

¢ The gather operations collects data from the other ranks into a big
buffer

¢ Example: gathering pieces of a distributed vector into a big local one

Scatter Gather

sndbuf sndbuf sndbuf sndbuf sndbuf

cerswy— I 3| s s,)
AR

vo a; vH a, vN as vw ay

P a, a, a; a
rcvbuf rcvbuf rcvbuf rcvbuf 0 1 e NSSN

rcvbuf

Image © CSCS

59

All-to-all

¢ MPI_Alltoall: n-th rank sends k-th portion of its data to rank k and
receives n-th portion from process k.

¢ Everyone scatters and gather at the same time
¢ like a matrix transpose. Attention: slow!

Po, a a a a Pob a b o dq
4 P, b, b, by b, : "Py a b o d, 4
3 3
Q Q
& 5
0 _uo C; C C G > _uo a; by ¢ d; H
Po d d d5 ds 1 Po a b, ¢ d,

Image © CSCS

60

SPMD style

¢ All processes execute the same program: integratel.cpp

¢ Example: Integration of a function fover [a,b] on N processes

| int main(int argc, charkx argv) {

| // do some initialization

“ // find interval for this process

double interval=(b-a)/total;

double start=a+intervalxnum;

double end=start+interval;

// partial integral between [start,end[

double partial=integrate(sin,start,end,steps/total);

// sum up partials
double sum=0.;
MPI_Allreduce(&partial,&sum,1,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

// print and finish

Master - Slave style

¢ One process, the Master distributes tasks: integrate2.cpp
¢ Other processes (slaves) ask for tasks and perform them

| void master()

I{

u // find tasks & distribute them
,,_”Y -

void slavel()

{

// ask master for tasks & perform them
}

int main(int argc, charkxx argv) {
// (init)
if (rank==0)
master();
else
slave();

¢ Master and slave can run different programs!

MPI is much more than this

¢ We didn’t touch:

¢ Asynchronous, Non-blocking communication
¢ very important to overly communication and computation

¢ One-sided communication
¢ Custom datatypes

¢ Communicator subgroups
¢ etc.

¢ More advanced lecture will have a more detailed view
¢ High Performance Computing for Science and Engineering

63

Debugging a parallel program

¢ is very hard
main problem are deadlocks
¢ some graphical tools exist:
¢ xpvm
¢ xmpi
¢ can help to understand what is going on
¢ Open MPI explains how to use debuggers (gdb, totalview)

¢ http://www.open-mpi.org/fag/?category=debuggin

*

¢ Hints
¢ first write a working serial program
¢ Parallelize it and run it one one process first
¢ two processes next
L 4

¢ Good luck!!!

64

Scaling with number of processes: Amdahl’s law

¢ The sequential, non-parallel part will dominate the CPU time!
¢ Assume N processes
¢ ononeprocess: T, =T ., +T

parallel

mm:m_+._.
\._.A

¢ on Nprocesses: T, =T /N+T (N)

parallel communication

¢ define serial ratios=T

serial

¢ Reduce serial parts

¢ The optimum speedup would be
T, T,

sT1 + (1 —s)T1/N + Teommunication = sTy+(1—-s)T1/N =
¢ cven if 1% is serial it does not scale well beyond 100 processes!
current machines have >10000 processes!
¢ Reduce communication time
¢ Trytokeep T as small as possible

speedup =

communication
¢ Overlay communication with computation
¢ Make a plot of the speedup vs. N for your program!

1
S

65

