
Quantum Information Theory
Solutions 5

FS 11
Professor Renato Renner

Exercise 5.1 Purification

A decomposition of a state ρA ∈ S(HA) is a (non-unique) convex combination of pure states ρxA = |ax〉〈ax| such that
ρA =

∑
x λxρ

x
A.

a) Show that |Ψ〉 =
∑
x

√
λx |ax〉A ⊗ |bx〉B is a purification of ρA for any orthonormal basis { |bx〉B }x of HB.

It remains to show that

TrB(|Ψ〉〈Ψ|) =
∑
x,y,z

√
λyλz|ay〉〈az|A ⊗ 〈bx|by〉︸ ︷︷ ︸

δxy

〈bz|bx〉B︸ ︷︷ ︸
δzx

=
∑
z

λx|ax〉〈ax|A = ρA.

b) Show that any two purifications are related by a local unitary transformation on the purifying system.

Suppose we found a state |ψ〉 of the composed system HA ⊗HB that purifies ρA, i.e., such that TrB(|ψ〉〈ψ|) = ρA.
A Schmidt decomposition (probably the most useful tool in quantum information) of |ψ〉 gives us

|ψ〉 =
∑
y

θy|y〉A|y〉B ,

where:

• {θy}y are the square roots of the eigenvalues of the reduced states of A and B ⇒ they have to be
{√

λx
}
x
;

• {|y〉A}y are the eigenvectors of ρA ⇒ they have to be {|x〉A}x;

• {|y〉B}y are the eigenvectors of ρB ⇒ there is no restriction on these.

So the {|y〉B}y can be changed, as long as {θy}y and {|y〉A}y are preserved. The only way to do this is to apply a
local unitary transformation on B, 1A ⊗UB , because if we applied anything other than the identity on A we would
change ρA and non-unitaries on B would not preserve eigenvalues of ρB .

Note also that any two orthonormal bases are related by a unitary: Let {bx}B and {cx}B be two orthonormal bases.
We can define a map from one basis two the other as

U : {bx}B 7→ {cx}B , where U =
∑
x

|cx〉〈bx|

We can immediately verify that UU† = U†U = 1.

c) For ρA as defined above, and any purification |Φ〉 of ρA on HA ⊗HB, find an orthogonal measurement {Mx
B}x on

HB, such that

λx = Tr [|Φ〉〈Φ|(1A ⊗Mx
B)] and ρxA =

TrB [|Φ〉〈Φ|(1A ⊗Mx
B)]

λx
. (1)

In this picture λx is the probability of measuring x and ρxA is the state after such a measurement.

Note that all purifications of ρA in HA ⊗ HB are equivalent up to a unitary transformation in HB . In general,
purifications in HA⊗HB and HA⊗HB′ are related by isometric maps between the two Hilbert spaces HB and HB′ .
It is thus sufficient to find a POVM for one particular purification and show how the measurement operators can be
translated to any other purification possible.

Let us decompose the Hilbert space HB = HC ⊗ HD with an orthonormal basis {|dx〉D}x of HD. We are further
given {|φx〉AC}x, the purifications of the states {ρxA}x. It is now easy to verify that

|φ〉 =
∑
x

√
λx|φx〉AC ⊗ |dx〉D
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is a purification of ρA by taking the partial trace over HB .

The measurement operators MB = 1C ⊗ |dx〉〈dx|D fulfill the requirements:

TrB
(
|φ〉〈φ|(1A ⊗MB)

)
= TrC

(
TrD

(∑
y,z

√
λyλz(|φy〉〈φz|AC ⊗ |dy〉〈dz|D) · (1AC ⊗ |dx〉〈dx|D)

))
= TrC

(∑
a,y,z

√
λyλz|φy〉〈φz|AC ⊗ 〈da|dy〉〈dz|dx〉〈dx|da〉D

)
= λxTrC(|φx〉〈φx|AC)

= λxρ
x
A.

In the last step we used the fact that |φx〉 is a purification of ρxA. The second condition, λx = Tr(|φ〉〈φ|(1A ⊗MB)),
follows directly since TrρxA = 1.

Exercise 5.2 Distinguishing two quantum states

Suppose you know the density operators of two quantum states ρ, σ ∈ HA. Then you are given one of the states at
random—it may either be ρ with probability p, or σ with probability 1−p. The challenge is to perform a single measurement
on your state and then guess which state that is.

a) What is your best strategy? In which basis do you think you should perform the measurement? Can you express that
measurement using a projector P?

We are looking for a measurement O that maximises our probability of guessing correctly. For each state (say eg.
ρ) the probabilities of obtaining any of the possible outcomes {y}y of the observable O =

∑
y yPy that represents

the measurement define a classical probability distribution PrO,ρ(y) = Tr(Pyρ).

Let G = {y : PrO,ρ(y) ≥ PrO,σ(y)} be the set of outcomes that are more likely to occur when we measure O on ρ
than on σ. Naturally, if we obtain y after measuring our unknown state and obtain we should say it was ρ if y ∈ G
and vice-versa. The probability of guessing correctly is then

PrX = Pr(ρ) · Pr(say “ρ”|ρ) + Pr(σ) · Pr(say “σ”|σ)

= p ·
∑
y∈G

PrO,ρ(y) + (1− p) ·
∑
y∈Ḡ

PrO,σ(y)

= p
∑
y∈G

Tr(Pyρ) + (1− p)
∑
y∈Ḡ

Tr(Pyσ)

= pTr

∑
y∈G

Py

 ρ
+ (1− p)Tr

∑
y∈Ḡ

Py

σ


= Tr (pPG ρ+ (1− p)PḠ σ) ,

where PG :=
∑
y∈G Py and PḠ :=

∑
y∈Ḡ Py are projectors too, with PG + PḠ = 1.

Continuing, we obtain

PrX = Tr(pPG ρ+ (1− p)PḠ σ)

= Tr(pPG ρ+ (1− p)[1− PG] σ)

= Tr(PG [pρ− (1− p)σ]) + (1− p)Tr(1σ)

= Tr(PG [pρ− (1− p)σ]) + 1− p, (∗) (2)

where (∗) comes from the fact that σ is a density matrix and therefore Tr(σ) = 1.

To maximise this probability, we need to find the optimal set G that maximises Tr(PG [pρ− (1− p)σ]).

First we express G in another way,

G = {y : PrO,ρ(y) ≥ PrO,σ(y)}
= {y : Tr(pPyρ) ≥ Tr((1− p)Pyσ)}
= {y : Tr(Py(pρ− (1− p)σ)) ≥ 0} .
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Now we will try a clever choice of G. Let {y}y be the eigenbasis of pρ − (1 − p)σ =
∑
y λy|y〉〈y|. Notice that

pρ − (1 − p)σ is not a density matrix — in particular it has trace 2p − 1. If we choose {Py}y to be the projectors

on that basis, Py = |y〉〈y|, we obtain

G = {y : Tr(Py(pρ− (1− p)σ)) ≥ 0}

=

y : Tr

|y〉〈y| ∑
y′

λy′ |y′〉〈y′|

 ≥ 0


= {y : Tr (|y〉〈y|λy) ≥ 0}
= {y : λy ≥ 0} .

i.e. G is the set of projectors on states that correspond to non negative eigenvalues of pρ − (1 − p)σ. In this case,
Tr(PG [pρ− (1− p)σ]) is the sum of all positive eigenvalues of pρ− (1− p)σ.

This result is promising, but now we have to prove that is is indeed optimal, i.e. that no other choice of projector P
could give better results. We can write pρ− (1− p)σ as R−S, where R =

∑
y∈G λy|y〉〈y| and S =

∑
y∈Ḡ−λy|y〉〈y|.

Both operators R and S are positive and diagonal.

We have that

Tr(PG [pρ− (1− p)σ]) =
∑
y∈G

λy = Tr(R). (3)

For any other operator, however,

Tr(P [pρ− (1− p)σ]) = Tr(P [R− S])

= Tr(P R)− Tr(P S)

≤ Tr(R)− Tr(P S) (∗)

≤ Tr(R), (∗∗)

where (∗) stands because projectors can only decrease the trace and (∗∗) because Pσ is positive.

We have proved that a measurement represented by O =
∑
y oy|y〉〈y|, where {|y〉}y is the eigenbasis of pρ− (1− p)σ

optimises the probability of guessing correctly which state we were given.

This solution corresponds to the following strategy. We measure our state (ρ or σ) in the eigenbasis of pρ− (1−p)σ.
If we obtain a state that corresponds to a positive eigenvalue of pρ− (1− p)σ (i.e. y ∈ G) then it is more likely that
we have measured ρ. If we get a negative eigenvalue of pρ− (1− p)σ (i.e. y ∈ Ḡ) we should say the state was σ.

In the particular case where the two density operators share the same eigenbasis, this corresponds to following
the classical strategy for distinguishing two probability distributions after measuring the state in their common
eigenbasis.

b) What is the probability of guessing correctly, PrpX(ρ, σ)? Compare that with the case where the states are evenly
distributed, Pr0.5

X (ρ, σ) = 1
2 [1 + δ(ρ, σ)], where δ(ρ, σ) is the trace distance between the two quantum states.

We have solved this in the previous exercise (Eq. 2), and when p = 0.5 we get:

1

2
(Tr(PG [ρ− σ]) + 1) =

1

2
(δ(ρ, σ) + 1),

where we use the definition of the trace distance as δ(ρ, σ) := Tr(|ρ− σ|), which was shown in Eq. 3.

Exercise 5.3 Distance bounds

a) Given a trace-preserving quantum operation E and two states ρ and σ, show that

δ (E(σ), E(ρ)) ≤ δ(σ, ρ). (4)
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We use the fact that ρ− σ = R− S, where R and S are positive operators with orthogonal support. Then we have

δ(σ, ρ) =
1

2
Tr(|ρ− σ|)

=
1

2
(Tr(R) + Tr(S))

= Tr(R) (∗)

= Tr [E(R)]

≥ max
P
{Tr [PE(R)]− Tr [PE(S)]} (∗∗)

= max
P

Tr [P (E(R− S))] (∗∗∗)

= δ (E(σ), E(ρ)) ,

where (∗) stands because Tr(R) = Tr(S), as

Tr(R)− Tr(S) = Tr(R− S) = Tr(|ρ− σ|) = |Tr(ρ)− Tr(σ)| = |1− 1| = 0,

and the inequality (∗∗) follows from Tr[PE(R)] ≤ Tr(E(R)) and Tr(PE(S)) ≥ 0 for any projector P , since projectors
are positive operators and can only decrease the trace. Finally, linearity of TPMs allows us to perform step (∗∗∗).

b) Show that any purification of the state ρAB = 1A

|HA| ⊗ ρB has the form

|ψ〉AA′BB′ = |Ψ〉AA′ ⊗ |ψ〉BB′ ,

where |Ψ〉AA′ = |HA|−
1
2

∑
i |i〉A|i〉A′ is a maximally entangled state, and |ψ〉BB′ is a purification of ρB.

There are several ways of solving this exercise. For instance, let |Ψ〉AA′ be a purification of ρA, and |ψ〉BB′ a
purification of ρB ,

ρA =
1

|HA|
∑
k

|k〉〈k|A ⇒ |Ψ〉AA′ =
1√
|HA|

∑
k

|k〉A|k〉A′

ρB =
∑
`

λ` |`〉〈`|B ⇒ |ψ〉BB′ =
∑
`

√
λ` |`〉B |`〉B′ .

Then |Ψ〉AA′ ⊗ |ψ〉BB′ is a purification of ρAB ,

TrA′B′

(
|Ψ〉〈Ψ|AA′ ⊗ |ψ〉〈ψ|BB′

)
= TrA′

(
|Ψ〉〈Ψ|AA′

)
⊗ TrB′

(
|ψ〉〈ψ|BB′

)
= ρA ⊗ ρB .

All purifications are equivalent up to a unitary transformation on the purifying system, in this case HA′ ⊗HB′ . The
unitary operators that express such transformations can be written as

U =
∑
k,`

|φk`〉P
(
〈k|A′ ⊗ 〈`|B′

)
.

The states {|φk`〉}k,` form a basis for HP . In particular, they have to be orthonormal, 〈φk`|φmn〉 = δkmδ`n. If we
fix the first index we get 〈φk`|φkn〉 = δkm, and conclude that the states have to have the form |φk`〉 = |φk〉 ⊗ |φ`〉.
An alternative solution uses a Schmidt decomposition of the purification to prove that the purification of a product
state is a product of pure states.

c) Show that 1− F (ρ, σ) ≤ δ(ρ, σ) ≤
√

1− F (ρ, σ)2.

i) First we show that 1− F (ρ, σ) ≤ δ(ρ, σ).

Let {Em} be a POVM such that

F (ρ, σ) =
∑
m

√
pmqm, (5)
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where pm = Tr(ρEm) and qm = Tr(σEm). Observe that∑
m

(
√
pm −

√
qm)2 =

∑
m

pm +
∑
m

qm − 2F (ρ, σ) = 2(1− F (ρ, σ)). (6)

Also note that |√pm −
√
qm| ≤ |

√
pm +

√
qm| and so∑

m

(
√
pm −

√
qm)2 ≤

∑
m

|√pm −
√
qm||
√
pm +

√
qm| =

∑
m

|pm − qm| (7)

= 2δ(pm, qm) ≤ 2δ(ρ, σ), (8)

where we use part (a) in the last line. Comparing Eqs. 6 and 8, we get the result.

ii) Now we show that δ(ρ, σ) ≤
√

1− F (ρ, σ)2.

First we prove that δ(|a〉, |b〉) ≤
√

1− F (|a〉, |b〉)2, where |a〉 and |b〉 are pure states, and it is implicit that
δ(|a〉, |b〉) := δ(|a〉〈a|, |b〉〈b|) (and similarly for the fidelity).

We may fix a basis with which to represent the states |a〉 and |b〉, namely |a〉 = |0〉 and |b〉 = cos θ|0〉+ sin θ|1〉.
Note that F (|a〉, |b〉) = |〈a|b〉| = | cos θ|. Also the trace distance is:

δ(|a〉, |b〉) =
1

2
Tr

∣∣∣∣ 1− cos2 θ − cos θ sin θ
− cos θ sin θ − sin2 θ

∣∣∣∣ = | sin θ| =
√

1− F (|a〉, |b〉)2. (9)

For mixed states ρ and σ we can pick purifications (|ψ〉 and |φ〉, respectively) of these states such that F (ρ, σ) =
|〈ψ|φ〉| = F (|ψ〉, |φ〉) (using Uhlmann’s theorem). Using part (a) with the partial trace as the completely positive
map, we get:

D(ρ, σ) ≤ D(|ψ〉, |φ〉) =
√

1− F (|ψ〉, |φ〉)2 =
√

1− F (ρ, σ)2 (10)

d) Consider a state that is ε-distant from ρAB according to the trace distance, i.e.

δ

(
σAB ,

1A

|HA|
⊗ ρB

)
≤ ε.

Find an upper bound for

δ (τAA′ , |Ψ〉AA′〈Ψ|AA′) ,

where |φ〉AA′BB′ is a purification of σAB and τAA′ = TrBB′(|φ〉AA′BB′〈φ|AA′BB′).

We know that
1− F (ρ, σ) ≤ δ(ρ, σ) ≤

√
1− F (ρ, σ)2.

from which follows √
1− F (ρ, σ)2 ≤

√
2δ(ρ, σ)− δ(ρ, σ)2.

We also know that fidelity can be preserved under purifications (theorem 4.3.8), leaving us with

δ (τAA′ , |Ψ〉AA′〈Ψ|AA′) ≤
√

1− F (|φ〉AA′BB′ , |Ψ〉AA′ ⊗ |ψ〉BB′)
2

=
√

1− F (σAB , ρAB)2

≤
√

2δ(σAB , ρAB)− δ(σAB , ρAB)2

≤
√

2ε− ε2,

where the last inequality stands because the function
√

2x− x2 is monotonically increasing for x ∈ [0, 1].
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