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Exercise 8.1 Representations of CPTP maps

Normally, operators that map from the Hilbert space HA to HB are represented as matrices, such as C =
∑
ij cij |i〉B〈j|A.

We can instead represent them as vectors:

|C〉〉 =
∑
ij

cij |i〉A|j〉B . (1)

We use this notation to denote that the operator C is represented as a vector (and therefore we use a ket), but we use
the double right angle bracket to remember that this is an operator and not a state in a Hilbert space. Formally, if
C ∈ Hom(HA,HB) then |C〉〉 ∈ Hom(C,HA ⊗HB).

a) Show that Y ⊗X |Z〉〉 =
∣∣XZY T 〉〉 , where X ∈ Hom(HA,HB), Y ∈ Hom(HC ,HD) and Z ∈ Hom(HC ,HA). Note

that the transpose on Y is defined in the basis chosen to represent the operators in Eq. 1.

First we write X and Y as
X =

∑
kl

xkl|k〉B〈l|A, Y =
∑
mn

ymn|m〉D〈n|C .

Then the LHS is:

Y ⊗X |Z〉〉 =
∑

ijklmn

xklymnzij |m〉D〈n|C ⊗ |k〉B〈l|A (|j〉C |i〉A)

=
∑
ijkm

xkiymjzij |m〉D|k〉B .

The RHS is:

∣∣XZY T 〉〉 =

∣∣∣∣∣∣
∑

ijklmn

xklymnzij |k〉B〈l|A|i〉A〈j|C |n〉C〈m|D

〉〉

=

∣∣∣∣∣∣
∑
ijkm

xkiymjzij |k〉B〈m|D

〉〉
.

Clearly the LHS is the same as the RHS.

b) Show that TrA(|X〉〉 〈〈Y | ) = XY ∗, where X,Y ∈ Hom(HA,HB).

We can write
X =

∑
kl

xkl|k〉B〈l|A, Y =
∑
mn

ymn|m〉B〈n|A.

And so:

TrA(|X〉〉 〈〈Y | ) =
∑
i

〈i|A

(∑
klmn

xkly
∗
mn|l〉A|k〉B〈n|A〈m|B

)
|i〉A

=
∑
klm

xkly
∗
mn|k〉B〈m|B〈n|A|l〉A

= AB∗.

c) We can use the properties (a) and (b) to now derive the Choi-Jamio lkowski representation for CPTP maps. Re-
member that the operator-sum representation of a map E ∈ Hom(End(HA),End(HB)) can be written as:

E(ρA) =
∑
k

EkρAE
∗
k ,
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where
∑
k E
∗
kEk = 1. Use (a) and (b) to show that there exists a Choi-Jamio lkowski (CJ) matrix TA′B ∈ End(HA′B)

such that
E(ρA) = TrA(TAB(ρTA ⊗ 1B)),

where A′ is a copy of A, so TAB :=
∑
i,j |i〉A〈i|A′TA′B |j〉A′〈j|A, and {i}i, {j}j are orthonormal bases for both A and

A′.

Starting with the operator-sum representation, we can write:

E(ρA) =
∑
k

EkρAE
∗
k

=
∑
k

TrA(|EkρA〉〉 〈〈Ek| ) from (b)

=
∑
k

TrA(ρTA ⊗ 1B |Ek〉〉 〈〈Ek| ) from (a)

= TrA
(
(ρTA ⊗ 1B)TAB

)
,

where TAB =
∑
k |Ek〉〉 〈〈Ek| . Therefore TA′B =

∑
ij |i〉A′〈i|ATAB |j〉A〈j|A′ .

d) Show that TA′B from (c) can also be written as

TA′B = (IA′ ⊗ E)(d|ψ+〉A′A〈ψ+|),

where |ψ+〉A′A = 1/
√
d
∑d
i=1 |i〉A′ |i〉A = 1/

√
d |1〉〉A′A.

We can rewrite this expression as:

(IA′ ⊗ EA)(|1〉〉A′A 〈〈1| ) =
∑
k

1⊗ Ek |1〉〉A′A 〈〈1| 1⊗ E
∗
k

=
∑
k

|Ek〉〉A′B 〈〈Ek| = TA′B .

e) What are the CP and TP conditions on TA′B in the CJ picture?

Trace preserving:
Tr(E(ρA)) = TrA(ρTATrB(TAB)) = 1.

This has to be true for all ρA, and so TrB(TAB) = 1A. This translates directly to TrB(TA′B) = 1A′ .

Completely Positive:

If E is CP then

IC ⊗ EA(ρCA) ≥ 0,

for all systems C. Since from part (d) we know that TAB = IA′⊗EA(d|ψ+〉〈ψ+|) then T ≥ 0 is a necessary condition
for CP. To show that it is sufficient, clearly we have

IC ⊗ EA(ρCA) = TrCA(ρTCA ⊗ 1C′BTCAC′B) ≥ 0,

where C ′ is the output system of IC .

f) There is another representation called the Normal representation which is defined via the following isomorphism:

N : Hom(End(HA),End(HB)) 7→ Hom(Hom(C,HAA′),Hom(C,HBB′)),

where A′ is a copy of A and B′ is a copy of B. Show that for any CPTPM E there exists an operator NAA′→BB′

such that
N |ρA〉〉 = |E(ρA)〉〉 ∀ρA ∈ S=(HA),

where A′ is a copy of A and B′ is a copy of B.
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This follows from part (a) and the Kraus operator representation of the map E :

|E(ρ)〉〉 =

∣∣∣∣∣∑
k

EkρE
∗
k

〉〉
=
∑
k

|EkρE∗k〉〉

=
∑
k

Ēk ⊗ Ek |ρ〉〉 ,

where Ēk indicates the complex conjugate without a transpose. Therefore N =
∑
k Ēk ⊗ Ek.

g) What is the TP condition on N?

Trace-preserving means that Tr(E(ρ)) = Tr(ρ). First, notice that Tr(ρ) = 〈〈1| |ρ〉〉. So we need

BB′ 〈〈1| N |ρ〉〉AA′ =AA′ 〈〈1| |ρ〉〉AA′ .

This has to be true for all ρAA′ and therefore

BB′ 〈〈1| N |1〉〉AA′ = 1

Exercise 8.2 Measurements as unitary evolutions

Consider a measurement on a system HA, whose output is in HB that is described by the observable O =
∑
x∈X xPx, where

{Px}x are projectors. Suppose we want to apply the measurement to the state ρA. We can represent the measurement as
a unitary evolution on a larger system, followed by a partial trace.

a) Show that E(ρA) can be written as unitary acting on a larger space H ⊗H followed by a partial trace over B. This
task can be broken down into the following steps:

i) What is the operator-sum representation of the measurement of the operator O?

We know that the state of the system after measurement is given by ρx = PxρP
∗
x/Tr(ρPx). Now if we

forget the measurement outcome x that we obtained from the measurement, the post-measurement state
is described by: E(ρ) =

∑
x p(x)ρx. Note that this is an average over the output states weighted by the

probability of getting outcome x: p(x). But p(x) is given by Tr(ρPx), and therefore E(ρA) =
∑
x PxρAPx.

ii) If we write the projectors as Px =
∑
i |φxi 〉〈φxi |, what is the Choi-Jamio lkowski matrix?

First, note that Px =
∑
i |φxi 〉〈φxi | has a sum over the index i, but this sum is not necessarily over each

element in the whole space, otherwise Px = 1, and x has only one value (since
∑
x Px = 1). That means we

can equivalently write the projectors as: Px =
∑
i∈Sx
|φi〉〈φi|, where |φi〉 are the same as |φxi 〉, but the index

x is dropped, since as we’ll see in part (iii), these states are orthonormal between x and i. Also, Sx is the
set of the full space where we sum over.

From the last exercise, we know that the CJ matrix is given by ν =
∑
x |Px〉〉 〈〈Px| . Therefore νA′B =∑

x,i,j |φxi 〉A′ |φxi 〉B〈φxi |A′〈φxi |B =
∑
x,i∈Sx,j∈Sx

|φi〉A′ |φi〉B〈φj |A′〈φj |B (depending on which notation you use
from part (ii)), where the space A′ is a copy of the space A (i.e. it has the same dimension).

iii) Give an expression for a purification of the Choi-Jamio lkowski matrix. Note that since the CJ matrix is
positive semi-definite and hermitian, you can treat it like an unnormalized density operator.

First, we show that the states |φxi 〉 are orthonormal. We know that P 2
x = Px, and so P 2

x =
∑
x,i,j |φxi 〉〈φxi |φxj 〉〈φxj |.

In order for this to be P (x), 〈φxi |φxj 〉 = δij . We also know that
∑
x Px = 1, and so squaring this expres-

sion gives
∑
x,y,i,j |φxi 〉〈φxi |φ

y
j 〉〈φ

y
j | = 1. If we break this sum up into the sum where x = y and x 6= y:∑

x=y,i,j |φxi 〉〈φxi | +
∑
x 6=y,i,j |φxi 〉〈φxi |φ

y
j 〉〈φ

y
j | = 1 +

∑
x 6=y,i,j |φxi 〉〈φxi |φ

y
j 〉〈φ

y
j | = 1. Therefore we have that

〈φxi |φ
y
j 〉 = δijδxy.

Now we can rewrite ν as νA′B =
∑
x |ψx〉〈ψx|, where |ψx〉 =

∑
i |φxi 〉|φxi 〉 =

∑
i∈Sx
|φi〉〈φi| (depending

on which notation from (ii) you use), and we know that the |ψx〉 are orthornormal. Then clearly ν has
eigenvectors |ψx〉 with eigenvalues 1.

Now we can write down the purification as: |Φ〉A′BR =
∑
x |ψx〉A′B |ϕx〉R, where |ϕx〉 is an orthonormal basis

for the space R.
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iv) Apply the inverse of the CJ isomorphism to the purified state in (iii), and show that it is of the form UρAU
∗,

where U is an isometry. The inverse CJ isomorphism is the map that takes a state ρA′BR as input, and
outputs a map F . Specifically:

F(ρA) = dim(HA)TrA′

∑
i,j

|i〉A′〈j|AρA|i〉A〈j|A′

⊗ 1BR · ρA′BR

 ,

where {|i〉}i is an orthonormal basis for A and A′ (similarly for {|j〉}j), and ρA′BR is the CJ matrix purified.

In place for ρA′BR we can place the purification of the CJ matrix |Φ〉A′BR〈Φ|, and normalize it: Tr(|Φ〉〈Φ|) =
dim(HA′B) = d2 (where d = dim(HA) = dim(HA′) = dim(HB)), so |Φ〉 7→ |Φ〉/d2 and rearranging some of
the terms:

F(ρA) = 1/d
∑
i,j

((〈j|A′ ⊗ 1BR)|Φ〉〈j|AρA|i〉A〈Φ|(|i〉A′ ⊗ 1BR)) .

Now let U =
√

1/d
∑
j(〈j|A′ ⊗ 1BR)|Φ〉A′BR〈j|A, so now F(ρA) = UρAU

∗.

It remains to be shown that U is an isometry. That is

U∗U = 1/d
∑
i

|i〉A〈Φ|(|i〉A′ ⊗ 1BR)
∑
j

(〈j|A′ ⊗ 1BR)|Φ〉〈j|A

= 1/d
∑
i,j

|i〉A〈Φ|(|i〉A′〈j|A′ ⊗ 1BR)|Φ〉〈j|A

= 1/d
∑
i,j

|i〉A
∑
x,y

∑
l∈Sx,m∈Sy

〈φl|B〈ϕx|R(〈φl|i〉〈j|φm〉1BR)|φm〉B |ϕy〉R〈j|A

= 1/d
∑
i,j

|i〉A〈j|A
∑
x,y

∑
l∈Sx,m∈Sy

〈φl|φm〉〈ϕx|ϕy〉(〈φl|i〉〈j|φm〉)

= 1/d
∑
i,j

|i〉A〈j|A
∑
x,y

∑
l∈Sx,m∈Sy

δl,mδx,y(〈φl|i〉〈j|φm〉)

= 1/d
∑
i,j

|i〉A〈j|A
∑
x

∑
l∈Sx

〈φl|i〉〈j|φl〉

We can pick the basis {|i〉}i to be same as {|φi〉}i and so:

U∗U = 1/d
∑
i,j

|i〉A〈j|A
∑
x

∑
l∈Sx

δi,jδi,l

= 1/d
∑
i

|i〉A〈i|A(
∑
x

∑
i∈Sx

1)

= 1/d
∑
i

|i〉A〈i|Ad

= 1A

v) Finally, show that TrR(F(ρA)) has the same output as the measurement in (i).

First: TrR(|Φ〉〈Φ|) = νA′B , since it is the purification of νA′B . Therefore:

TrR(F(ρA)) = 1/dTrA′


∑

i,j

|i〉A′〈j|AρA|i〉A〈j|A′


︸ ︷︷ ︸

Transpose of ρ

⊗1B · νA′B


= TrA′

(
ρTA′ ⊗ 1B/d · νA′B

)
,

and this is the CJ representation of the output state, as required.

b) Give an explicit expression for the map E for two different measurements on a qubit state described by the POVMs:
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1. M1 = {|0〉〈0|, |1〉〈1|}.

CJ Representation:

Since we know ν =
∑
x |Px〉〉 〈〈Px| , then ν = |00〉〉 〈〈00| + |11〉〉 〈〈11| =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

.

Operator-Sum Representation:

E(ρ) = 〈0|ρ|0〉 ⊗ |0〉〈0|+ 〈1|ρ|1〉 ⊗ |1〉〈1|.
2. M2 = {p|0〉〈0|, p|1〉〈1|, (1− p)12}. What is the physical interpretation of this POVM?

CJ Representation:

We have to redo part (i) of (a), since now we apply a projector with a certain probability. The post-measurement
state is still ρx = PxρP

∗
x/Tr(ρPx). So now the operator sum notation is E(ρ) =

∑
x p(x)ρx =

∑
x pxPxρPx,

where px is the weight associated with each projector (in this case it’s p or 1− p). This makes the CJ matrix
ν = px |Px〉〉 〈〈Px| .

So now ν = p |00〉〉 〈〈00| + p |11〉〉 〈〈11| + (1− p) |1〉〉 〈〈1| =


1 0 0 1− p
0 0 0 0
0 0 0 0

1− p 0 0 1

.

Operator-Sum Representation:

E(ρ) = p〈0|ρ|0〉 ⊗ |0〉〈0|+ p〈1|ρ|1〉 ⊗ |1〉〈1|+ (1− p)ρ.

This measurement can be interpreted as measuring either 0 or 1 with probability p, and otherwise you know
the state was left unchanged.

Exercise 8.3 Unambiguous State Discrimination

Suppose you are given one of two states, ρ and σ, with equal probability, and want to distinguish them with a single
measurement. We have seen that, unless the states are orthogonal (δ(ρ, σ) = 1), it is impossible to always distinguish them
with certainty. We also saw that if you wanted to maximize the probability of guessing correctly, the best strategy was to
measure the state in the eigenbasis of ρ− σ: you would be right with probability PrX = 1

2 (1 + δ(ρ, σ)).

Now suppose you have a different goal: you will only make a guess when you are certain of which state you have, so as to
never make a mistake. Formally, you will perform a measurement described by a POVM {Mρ,Mσ,M?}, such that: (1) if
you obtain an outcome corresponding to Mρ or Mσ, you know for sure that you have ρ or σ, respectively, and (2) if your
outcome corresponds to M? you do not know with certainty which state you have, and you will not risk guessing.

a) We will consider only pure states ρ = |ψ〉〈ψ|, σ = |φ〉〈φ|. We want to have zero probability of guessing “ψ” when the
state measured was φ (and vice-versa) . What does this tell us about the form of Mψ, Mφ and M? ?

In order for the measurement result Mψ to never occur when the state |φ〉 is used, we need that the probability
〈φ|Mψ|φ〉 = 0. This occurs if Mψ is a linear combination of |φ⊥i 〉〈φ⊥i |, where |φ⊥i 〉 are normalized states orthogonal
to |φ〉, i.e. 〈φ⊥i |φ〉 = 0.

The same is true for Mφ, with |ψ⊥i 〉〈ψ⊥i | respectively.

Since Mψ +Mφ +M? = 1, then we know that M? = 1−Mψ −Mφ.

b) Maximize the probability of making a correct guess, i.e., minimize the probability of obtaining M?. Remember that
you can expand one of the states in terms of the other and a particular vector orthogonal to it denoted by index k or
l, for instance

|φ〉 = a|ψ〉+ b|ψ⊥k 〉, |ψ〉 = a∗|φ〉 − b|φ⊥l 〉, a = 〈ψ|φ〉, |a|2 + |b|2 = 1. (2)
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From part (a) we know that Mψ =
∑
i ci,ψ|φ⊥i 〉〈φ⊥i |, Mφ =

∑
j cj,φ|ψ⊥j 〉〈ψ⊥j | and M? = 1 −Mψ −Mφ, where ci,ψ,

cj,φ are positive constants smaller or equal to 1.

The probability of succeeding is given by

pX =
1

2
(〈φ|Mφ|φ〉+ 〈ψ|Mψ|ψ〉) =

∑
i,j

1

2
(ci,φ|〈φ|ψ⊥i 〉|2 + cj,ψ|〈ψ|φ⊥j 〉|2). (3)

If we replace |φ〉 and |ψ〉 with their representation as in (2) we get

pX =
1

2
(ck,φ|〈ψk|b|ψ⊥k 〉|2 + cl,ψ|(〈φ⊥l |(−b)|φ⊥l 〉)|2) =

1

2
(ck,φ + cl,ψ)|b|2. (4)

The most we can make ck,φ and cl,ψ is 1 and so we have pX = 1− |〈ψ|φ〉|2 since |b|2 = 1− |a|2 = 1− |〈ψ|φ〉|2.

c) What happens if ψ and φ are given with probability q and 1− q?
Redoing the calculation of part (b) we get

pX = ((1− q)〈φ|Mφ|φ〉+ q〈ψ|Mψ|ψ〉) = ((1− q)ck,φ + qcl,ψ)|b|2. (5)

The most we can make ck,φ and cl,ψ is 1, and since 1 − q and q are positive, we get the same result as in (b), i.e.
pX = 1− |〈ψ|φ〉|2, and the measurement operators are the same, Mφ,Mψ,M?.
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