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Exercise 3.1 Channel capacity

Channels! A channel is a rather intuitive concept. Think of a noisy telephone line from the thirties. The question here
is: how do we characterise the telephone line? We want to know how well a person on the other side will understand us
when we phone. The relevant parameters cannot be the input sounds — those will change each time we use the channel.
We are more interested in how reliably the telephone will reproduce each sound input: each time I say “aye”, what is the
probability that the sound that arrives the other side is “aye” and not “nay”? In other words, what is the probability
of getting an “aye” conditioned on the fact that I input an “aye”? You can see where this is leading. A channel is fully
characterised by the set of conditional probabilities of the outputs given each of the inputs. Pages 10–11 of the script have
details and a much more precise formulation of what a channel is.
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Figure 1: A channel with two inputs x1 and x2 and two outputs is defined by the conditional probabilities Pyi|xj
.

You may see that in exercise 2.2 we had a channel — expect that in that case we also fixed the probabilities of each input.
Now that you have characterised your telephone line with all the conditional probabilities, you want to find a way of
quantifying how reliable it is. One way of doing this is to ask “I want to send a message through this channel with only
a negligible probability of error. How long can that message be?” In the iid limit (i.e. you use the channel many times),
the answer is the capacity of the channel. This is explained in detail in pages 18–22 of the script. Here as usual I will just
try to give a feeling of its meaning.
You have seen that the mutual information gives us an amount of how correlated two things are. That is precisely what
we want of a channel — the more correlated the input and output are, the better the channel. The quality (or capacity)
of a channel should be related to the mutual information between input and output.
There is one free parameter in a channel, which is the probability distribution on the inputs. We can use it to maximise the
certainty that our message will be well received by encoding our message. For instance, imagine a channel that transmits
“ayes” correctly with 99% of probability but fails at transmitting “nays” 30% of the time. We may use redundancy to
ensure our “nays” will be understood as such, by saying “nay nay nay” for each “nay” intended. The person in the other
side will decode any sequence of two or three “‘nays” (and one or none “aye”) as a single “nay”.
So, as we can use PX to maximise the fidelity of the channel, the final capacity is given by

C = max
PX

I(X : Y ). (1)

In part a) you have to apply this to two simple channels. You will find that the distribution PX that maximises the
mutual information is the uniform distribution. In part b) you are going to prove that that is the case for all symmetric
channels.
You start by considering N probability distributions for the input, P 1

X , . . . P
N
X , such that I(X : Y )P i = I(X : Y )P j ,∀i, j.

As an example you can think of a symmetric channels, where a permutation of the input probability distribution does not
change the mutual information between input and output: P 2

X , . . . P
N
X could be permutations of P 1

X .
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Now suppose that Joanna chooses which probability distribution she will use for an input by picking a ball from a bag
at random. Formally, this is expressed by a random variable B that can take values b = 1, . . . N (assume a uniform
probability distribution on the outcomes of B).
Now you compare the mutual information between input and output of the channel for Joanna, who knows which ball she
picked—and therefore which P iX she chose as input, I(X : Y |B), and someone who does not know which distribution she
chose, I(X : Y ). Use properties of the conditional entropies to prove this; in particular, do not forget that knowing more
cannot hurt (H(A|B) ≤ H(A)), and that the conditional probabilities that define the channel are fixed.
You should get that I(X : Y |B) ≤ I(X : Y ), i.e. one is always better if one does not know which P ix was used. “Not
knowing which distribution was used” is the same as admitting that a uniform mixture of those distributions was used,
i.e. P 1

X with probability 1/N , P 2
X with probability 1/N , etc. But what does that mean for symmetric channels? When

all the P ix are permutations of each other, what is their uniform mixture? Up to you to work out!

Exercise 3.2 Smooth entropies in the i.i.d. limit

In this exercise you will see that in the i.i.d. limit the smooth min-entropy is equivalent to Shannon entropy. If you
remember the exercises from last week, we said that Shannon entropy could be seen as an average uncertainty about an
experiment (ie. particularly relevant in the i.i.d. limit), while the min entropy was a measure of the probability of making
a correct guess about the outcome of an experiment and the max entropy gave us an upper bound for the memory size
necessary to store all possible outcomes (the smooth versions allowed us to optimise these quantities if we tolerated a
small error probability).
These three measures of uncertainty do not seem to be highly correlated – we saw some examples of how they could be
very different for the same probability distributions – so it may be surprising that they converge when you repeat an
experiment many times in the same conditions. The secret for that is that the law of large numbers modulates i.i.d.
probability distributions in a way that favours similarities among the different entropy measures. Intuitive example:
suppose the experiment “try a grape” can have the outcomes “sweet grape” with probability 90% and “bitter grape” with
probability 10%. If you try a thousand grapes it will be very unlikely that they are all sweet or all bitter; you expect
that around a hundred of them will be bitter and the rest will be sweet. In other words, you expect a typical pack of a
thousand grapes to have around 1000× 90% = 900 good grapes and 1000× 90% = 100 bitter grapes.
In general, when an experiment is repeated many times in i.i.d. conditions it is very hard to find an atypical sequence, ie.
one where the number of outcomes of each type is not proportional to the probability of that outcome in a single instance
of the experiment (see Fig. 2).
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Figure 2: Almost all the weight of an i.i.d. probability distribution is spread among typical sequences. If the individual
probability distribution of an experiment represented by X is PX = (PX(x1), PX(x2), . . . , PX(xk)), then a typical sequence
of n i.i.d. repetitions of the experiment has approximately nPX(x1) outcomes of type x1, nPX(x2) outcomes of type x2,
etc.

This way a probability distribution of i.i.d. experiments for large numbers looks flat for typical sequences with a tail of
very very unlikely atypical sequences. This tail can be ignored if we tolerate a small error probability (that we will see
that can be narrowed down to zero in the case of infinite i.i.d. repetitions), and what is left is an uniform distribution
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on typical sequences. We know that for uniform distributions min-, max- and Shannon entropies are the same. Of course
you will have to say all of this in a more precise way and without grapes.
Here goes a suggestion to resolve this. Start by defining the set of typical sequences as that of the outputs ~x =
(x1, x2, . . . , xn) whose average surprise content is close to the Shannon entropy of a single instance of the experiment, ie.
of the random variable X,

Gν =

{
~x ∈ X×n :

∣∣∣∣∣
[

1

n

∑
i

− logPX(xi)

]
−H(X)

∣∣∣∣∣ < ν

}
. (2)

Use the weak law of large numbers that we have seen in exercise series 1 to show that as the number of repetitions of the
experiment goes to infinity almost all outcomes belong to the typical set, i.e.

lim
n→∞

P ~X [Gν ] = lim
n→∞

P ~X [~x ∈ Gν ] = 1 (3)

for any bound ν > 0. Now you should prove that the distribution PX is approximately equal to one where we ignore all
the atypical sequences,

Q ~X(~x) =

{
P ~X(~x)/P ~X [Gν ] if ~x ∈ Gν ,
0 if ~x /∈ Gν .

(4)

So prove that the trace distance between the original distribution PX and the “truncated” QX vanishes,

lim
n→∞

δ(P ~X , Q ~X) = 0. (5)

Now use that result to prove that, for fixed ε and ν,

lim
n→∞

1

n
Hε

min( ~X) ≥ H(X)− ν. (6)

You know (page 15 of the script) that Hmin(X) ≤ H(X) ≤ Hmax(X) and should get an equality from there. The max
entropy can also be shown to be the same as the Shannon entropy in the i.i.d. limit, but you don’t have to show that in
the exercise.

Exercise 3.3 Quantum-Telepathy Game: Introduction

Welcome back to the quantum world! In the past few weeks we talked about fundamental concepts of information theory.
Now we will spend two weeks in a quick recap of quantum mechanicss basics (chapter 4.1 of the script, which, by the way,
you will be assumed to know by heart in the lectures), before we get to the fun stuff—quantum information. However,
we would like to give you a taste of how quantum systems can be more powerful than classical bits in information-related
tasks. Let us begin by introducing an entangled state.
The entangled state 1√

2
(|00〉+ |11〉) is one of those intrinsically odd things about quantum mechanics: it is a pure state of

two systems, such that if you measure it in the {|0〉, |1〉} basis on each side the outcomes will be random but always the
same in both systems. Check that by yourself: apply the joint measurement with outcomes {|00〉, |01〉, |10〉, |11〉} to that
state and see the probabilities of obtaining each outcome (page 30 of the script).
We will study entanglement in detail later on, and see everything one can do using entangled states (things like teleportation
and superdense coding). For now, look at the state that Alice and Bob share in the exercise, 1√

2
(|+−〉+ | −+〉). This,

as you may guess, is another entangled state. Remember that the {|+〉, |−〉} basis is just a rotation of the computational
basis for a qubit, {|0〉, |1〉} (we will get back to this next week). In this case, however, they will always obtain opposite
outcomes if they each measure their qubit in a very obvious basis. Solve this exercise and let’s jump to 3.2 b).
Now we are going to see what happens to a quantum state (in particular, an entangled quantum state) when one measures
only one part of it. Alice, Bob and Charlie share the state 1√

2
(|000〉 − |111〉). Charlie will try to measure his qubit in a

special basis so that Alice and Bob recover the very convenient state 1√
2
(|+−〉+ |−+〉) if he gets outcome b0 and a similar

state (just in a different basis) when he gets b1. Try measuring the state in a couple of bases and see what happens. Use
the postulate of page 30 to get the post-measurement state, and partial trace (pages 25–26) to trace out Charlie’s final
qubit and see what Alice and Bob get. Don’t cheat!
Once you found the right measurement, you know something quite useful: Charlie is able to leave Alice and Bob with one
of two states that they can use to obtain different bits x1 and x2. He cannot predict which of those two states it will be,
since the outcomes of his measurement are random, but after his measurement he can tell them which state they have by
sending them a single bit, b. It’s time to tackle the general game.
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Exercise 3.4 Quantum-Telepathy Game: The Full Story

The game starts with n collaborating players P1, P2, . . . , Pn who each have a qubit of a large state |Ψ〉 in the Hilbert space
H1⊗H2⊗· · ·⊗Hn. In other words, player Pi has control of the qubit in the space Hi. Then two of them will be randomly
selected and separated from the other players. These two players, let’s label them P1 and P2, are separated without the
knowledge of which other player was selected, and they cannot communicate with any of the players, including each other.
The remaining n − 2 players are allowed to communicate with each other, and do a measurement on the qubits they
each control. They can then send a bit b (either 0 or 1) to the two separated players. P1 and P2 output bits x1 and x2
respectively. They win the game if x1 6= x2.
To get a better feeling for the exercise let us look at what players can do in the classical (meaning non-quantum) case.
Well, essentially they can divide the players in four equally sized groups such that they only lose the game if the two
chosen players belong to the same group, i.e. they have a 75% chance of winning. Check Fig. 3 for details.
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Figure 3: The best strategy in the classical case: players are divided in four groups of the same size. Each group has
different instructions about what bit to output depending on the input bit. For instance if a member of the green group
ends up in the dark room, she should output 0 if the bit the other players pass her is a 0, and 1 if the input is a 1. The
players left in the room know which bit to send to the confined players according to their groups. For instance if one of
them is yellow and the other is green, they should send bit 1 so that they output different bits. They will only lose the
game if both players belong to the same group, with 25% of probability.

In the quantum version of this game players are allowed to share a quantum state and to perform local measurements.
However players are not allowed to communicate the results of their measurements to the caged ones, except for that
single bit. Of course if the total state is entangled then measuring a part of it will produce some changes in the rest,
but it is not as if they could send some useful information to the other players that way, because they cannot control the
outcomes of non deterministic measurements.
There is a strategy, however, that allows players to always win the game. They need to create a very special n−qubit
state in H1⊗H2⊗ · · · ⊗Hn and distribute it, leaving player i in control of Hi. Then the players that are left in the room
will measure their qubits one by one (uin the same basis as Charlie did) and remove them from the total system.
The magic here is that since they made a very clever choice of initial state (one where all the qubits are entangled in that
neat way you have in the exercise sheet), applying those operators will change the shared state in a nice, controlled way.
Of course that they cannot predict to which state it will collapse before performing the measurement, but they can keep
track of the state of the system by checking their measurement results.
The next step of their strategy is to send one bit of information to the two caged players. What do you think they should
tell them? And what can the prisoners do with their state to ensure they will output different bits?
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