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Exercise 9.1 Entanglement and Teleportation

This exercise introduces a rather spectacular result of quantum information: if two parties, Alice and Bob,
share an entangled state, than they can teleport a state from one side to the other at the cost of the
entanglement between them.
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Figure 1: Quantum teleportation: in the beginning, Alice has a a qubit S in pure state |ψ〉 and a qubit A
that is entangled with a qubit on Bob’s side in a Bell state. By the end of the protocol, Alice’s two qubits,
S and A, will be entangled in a Bell state (not necessarily the same) and Bob’s qubit, B, will be in state
|ψ〉. The entanglement between Alice and Bob is broken when |ψ〉 is “teleported”.

The setting is illustrated in Fig. 1. In her lab, Alice has a a qubit S in pure state |ψ〉 and a qubit A that is
entangled with a qubit on Bob’s side in a Bell state, 1√

2
(|0A0B〉+ |1A1B〉).

|ψ〉 is an arbitrary qubit pure state, so it may be written as |ψ〉 = α|0〉 + β|1〉, with |α|2 + |β|2 = 1. The
global system, HS ⊗HA ⊗HB, is initially in state

|φ0〉 = (α|0〉S + β|1〉S)⊗ 1√
2

(|0A0B〉+ |1A1B〉) . (1)

Now Alice measures her two qubits in the Bell basis,

{
|sak〉

}
k

=


1√
2

(|0S0A〉+ |1S1A〉) , 1√
2

(|0S0A〉 − |1S1A〉) ,

1√
2

(|0S1A〉+ |1S0A〉) , 1√
2

(|0S1A〉 − |1S0A〉)

 , (2)

obtaining outcomes 1, 2, 3 and 4 for each of the states |sak〉 respectively. We will see that after her
measurement Bob’s qubit “collapses” to a sate very close to |ψ〉.
The first thing you should notice is that the projectors of that measurement include the identity on B,
because she is not measuring anything on that system. For instance, the projector for the first state of the
Bell basis, |sa1〉, is

P1 =
1

2

[
(|0S0A〉+ |1S1A〉) (〈0S0A|+ 〈1S1A|)

]
⊗ 1B. (3)

Let us see what happens when Alice measures that state on her qubits, i.e. obtains outcome 1. From the
foundations of quantum mechanics (page 30 of the script) you know that the final state of the global system
is

|φ1〉 =
P1|φ0〉√

Pr1
, (4)

where Pr1 is the probability that the outcome of her measurement is 1. You can check that for this basis
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all outcomes are equally likely, Prk = 1
4 ,∀k. We obtain

|φ1〉 =
1√
2

[
(|0S0A〉+ |1S1A〉) (〈0S0A|+ 〈1S1A|)⊗ 1B

][
(α|0〉S + β|1〉S)⊗ (|0A0B〉+ |1A1B〉)

]

=
1√
2

(|0S0A〉+ |1S1A〉)⊗


〈0S0A| ⊗ 1B

[ (
α|0〉S + β|1〉S

)
⊗
(
|0A0B〉+ |1A1B〉

) ]
+〈1S1A| ⊗ 1B

[ (
α|0〉S + β|1〉S

)
⊗
(
|0A0B〉+ |1A1B〉

) ]


=
1√
2

(|0S0A〉+ |1S1A〉)⊗
[
α|0〉B + β|1〉B

]
= |as1〉 ⊗ |ψ〉B.

I hope the rainbow above has not blinded you and that you managed to follow what happened there and
how we ended up with a fully correlated Bell state on S ⊗ A that is decoupled from B, where we find |ψ〉.
The key, of course, lies in the strong correlations between A and B. If you repeat this procedure to all
possible outcomes(part a) of the exercise), you should obtain the table

Alice’s outcome Alice’s state Bob’s state Bob performs

1 |as1〉 = 1√
2

(|0S0A〉+ |1S1A〉) |b1〉 = α|0〉+ β|1〉 O1

2 |as2〉 = 1√
2

(|0S0A〉 − |1S1A〉) |b2〉 = α|0〉 − β|1〉 O2 =

(
1 0
0 −1

)
3 |as3〉 = 1√

2
(|0S1A〉+ |1S0A〉) |b3〉 = β|0〉+ α|1〉 O3

4 |as4〉 = 1√
2

(|0S1A〉 − |1S0A〉) |b4〉 = β|0〉 − α|1〉 O4

Not always it happens that the state of Bob’s system is exactly |ψ〉. For instance, when Alice obtains
outcome 2, his qubit goes to state α|0〉 − β|1〉, and he would have to perform a one-qubit operation on his
system to recover |ψ〉. In this case, he would have to flip the sign of |1〉, applying the unitary represented
by O2 in the computational basis. But all of this you should have covered in the lectures.
Of course, Bob only knows what operations to apply because he knows the state |bk〉 of his qubits, and he
knows that because Alice told him the outcome k of her measurement. What if Alice had not told him
the outcome? In that case, Bob would have to try to guess what the state of his qubit. He knows that
all measurement outcomes were equally likely, and that for each of them he would have a different state.
Fortunately, in quantum mechanics we have a way of describing probabilistic mixtures of pure states — with
density matrices. The state Bob has after Alice’s measurement is, from his point of view, ρ =

∑
k

1
4 |b

k〉〈bk|.
In part b) you have to show that when Bob does not know the outcome of the measurement, he cannot
have any idea of what his state is or how to recover |ψ〉, i.e. ρ = 1

21B. This tells us that the quantum
teleportation protocol can only work if Alice uses a (possibly classical) communication channel to share
some information with Bob (the outcome of her measurement).
Notice that when Alice and Bob teleport the state of one qubit, they lose their entanglement, and therefore
cannot repeat the protocol to teleport anything else. Impressive as it is, quantum teleportation comes with
a cost. So far we have only seen how to teleport a pure state. One may wonder what happens if the state
Alice tries to teleport is entangled with a reference system R that she does not control. Would the final
state on Bob’s side be entangled with R in the same way? The answer is, swimmingly, yes (Fig. 2).
In parts c) and d) of the exercise you are asked to prove that more formally. You can start by considering
that every mixed state can be expanded in its eigenbasis, ρS =

∑
i pi|i〉〈i|S , with |i〉 = αi|0〉+ βi|1〉. Check

that the protocol works for such a state. You can, for instance, show what happens when Alice measures
her two qubits in the Bell basis and obtains outcome 2. Remember that the final state of the whole system
is given by

1

Pr2

(
|as2〉〈as2| ⊗ 1B

)[
ρS ⊗

1

2
(|0A0B〉+ |1A1B〉) (〈0A0B|+ 〈1A1B|)

](
|as2〉〈as2| ⊗ 1B

)
. (5)
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Figure 2: Quantum teleportation preserves entanglement. If Alice teleports a mixed state ρS that is entan-
gled with a reference system R, ρS = TrR|φ〉〈φ|SR, not only the final state on Bob’s side will be ρ but it
will be entangled with R in the exact same way as before, ρB = TrR|φ〉〈φ|BR.

Verify that in order to recover ρ on his qubit, Bob only needs to apply the unitary O2 as before. Argue
that it also works for the remaining measurement outcomes. This implies, in particular, that the protocol is
linear: you did not have to use the convexity of density operators (

∑
i pi = 1) to prove this result. Now we

are ready to tackle correlations between ρS and an external system R. Try making a Schmidt decomposition
of the pure state |φ〉 of HS ⊗HR. You should get something like |φ〉SR =

∑
i pi|i〉S ⊗ |i〉R. If you call the

quantum teleportation protocol E , apply E ⊗ IR on that state and use the linearity of E you should obtain
the result we are looking for.

Exercise 9.2 Completeness of Quantum Theory - Original Bell paper

Keep the following questions in mind (they are only ideas though, take them with a grain of salt - maybe
this way of thinking helps you, maybe not):

1. In the paper they consider continuous Hilbert spaces, and look at position and momentum observables.
Could you translate their argument into the usual 2-party, 2-qubit space?

2. Think about the definition of physical reality. In particular, who needs to be able to predict with
certainty the relevant outcomes? Try to introduce light cones and causal structure into the argument
by Einstein, Podolsky and Rosen and reformulate their assumptions and definitions using this language.

Exercise 9.3 Majorization and entanglement catalysts

To learn more about majorization, check Section 6.3 of the script, and this book by Nielsen and Vidal:
http://www.rintonpress.com/journals/qic-1-1/vidal.pdf .
Quick recap: say that ρ and σ are d-dimensional states with eigenvalues {ai}i and {bi}i, respectively. Then
EV (ρ) ≺ EV (τ) means that

k∑
i=1

ai ≤
k∑

i=1

bi,∀k ≤ d.

In part a) you just have to apply this to the qubit case, d = 2, and see the consequences for the Bloch
vectors of the two states. Express the eigenvalues of ρ (and σ) as a function of |~r| (and |~t|) and the result
should be direct.
For part b) 3. we apply a (von Neumann) projective measurement on ρ. The post-measurement state, not

conditioned on the outcome, is just ρ′ =
∑

k PkρPk, with
∑

k P
†
kPk = 1. We consider only orthonormal

projectors, so P †
k = P 2

k = Pk. Note also that PkP` = P`Pk = δk`Pk. An example of such a POVM is just
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to measure in an orthonormal basis, or a coarse-graining of that measurement, like P1 =
∑5

x=1 |x〉〈x|, P2 =∑8
x=6 |x〉〈x|, for an o.n. basis {|x〉}8x=1.

We want to show that EV (ρ′) ≺ EV (ρ). Here is a suggestion on how to prove it. Say there are n projectors
{Pk}k in total. Create a family of operators U1, U2, . . . , Un defined as

Uj =

n∑
k=1

Exp

[
2πi

jk

n

]
Pk,

and check that they are unitaries. Now see that∑
j

∑
k

UjρU
†
j = nρ′.

Finally, use Corollary 6.3.3 from the script to prove the desired result.
For an alternative proof, start by proving the statement for two orthogonal projectors, and then use induction
to obtain the general case.
Part c) is pretty straight-forward, and pretty strange! Extra: Can you think of an explicit procedure that
Alice and Bob may use to take |ψ〉|τ〉 → |φ〉|τ〉 via LOCC?
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