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Exercise 1. Ideal phonons in a harmonic trap.

In this exercise we consider an ideal gas of phonons as an example of bosonic particles confined
in a three-dimensional harmonic potential. Observe the differences to the cases of classical and
fermionic particles in the same harmonic potential, which we discussed in Sheet 1, Exercise 3,
and for Sheet 3, Exercise 2, respectively.

The energy states of the phonons are given by

Ea = ~ω(3/2 + ax + ay + az) , (1)

including the zero point energy of E0 = 3 ~ω/2. The occupation number of the oscillator modes
of the state Ea is given by a = (ax, ay, az) with ai ∈ {0, 1, 2, ...}.

(a) Consider the high-temperature, low-density limit (z � 1). Derive the grand canonical
partition function for the phonons, Zb, and compute the grand potential Ωb. Take into
account also the zero-point energy of the harmonic oscillators. Show that

Ωb ∝ g4

(
ze−3β~ω/2

)
, (2)

where the function gs(z) is defined as

gs(z) =

∞∑
l=1

zl

ls
. (3)

(b) Derive the internal energy U and the average particle number 〈N〉. Follow the same
approach as in Sheet 3, Exercise 2 in order to obtain U in terms of N .

(c) Compute the specific heat CN for constant particle number.

Compute the thermal expansion coefficient α. Use the average square displacement of
the harmonic oscillator reff = x2

0(ax + ay + az) in order to define an effective volume
Veff = 4π/3 〈r2〉3/2. Give an interpretation of Veff.

(d) Plot your results for U , C, and α for the classical, the fermionic, and the bosonic case and
note the differences.

(e) Find the critical temperature Tc at which Bose-Einstein condensation occurs. How can
this be reconciled with the high-temperature, low-density limit?

Hint. The chemical potential can not be larger than the lowest energy level of the particles.

Exercise 2. Behavior of excitations in a semiconductor.

In this exercise we analyze the properties and behavior of electron-excitations of a semiconductor
at finite temperature. In solid state theory, electronic states |k, α〉 are usually labeled by a
pseudomomentum k = (kx, ky, kz) and a band-index α ∈ {1, 2, . . . }. For a crystal with lattice
constant a, the pseudomomentum takes values in the so-called Brillouin zone {−π/a, π/a}3.
Assuming a cubic crystal with side-length L there exist (L/a)3 equally distributed k-vectors in
this Brillouin zone. Each of the states is doubly degenerate due to the spin, such that there are
in total 2(L/a)3 states for each band.
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In order to simplify the treatment, we only
take into account two bands whose energies
are approximated as parabolic,

εv(k) = −~2k2

2mv
εc(k) = Eg +

~2k2

2mc
, (4)

as shown in the figure. Here the indices v and
c stand for valence and conduction band, re-
spectively. The parameters mv and mc which
define the curvature of the two bands are
called effective masses and can in general be
different from one another and from the elec-
tron mass. The bandgap, Eg, is the energy
difference between the bottom of the conduc-
tion band and the top of the valence band.

Assume for this exercise that the bandgap is much larger than the thermal energy and the
chemical potential lies within the gap, βEg � βµ� 1.

(a) Assume at first that the particle number is not fixed and calculate the grand potential Ω
of this system.

Hint. For large L, a sum over k can be approximated by an integral:

∑
k

≈
∫ π/a

−π/a
d3k

L3

8π3
(5)

(b) In a realistic system, the particle number is fixed, as every atom in the solid contributes
a specific number of electrons. We assume here a particle number, such that the lower
band is completely filled at zero temperature, i. e. N = 2(L/a)3. Calculate the chemical
potential µ(T ) at finite temperature.

(c) Starting from your result for Ω, calculate the internal energy U(T,N)− U(T = 0, N) (for
N = 2(L/a)3), using a Legendre transform.

Hint. The final result is given by

U(T,N)− U(T = 0, N) = N

(
kBT

2π~3

)3/2

e−βEg/2 (mvmc)
3/4

(3kBT + Eg) . (6)

(d) A picture that is frequently used in solid state theory is that of electrons and holes: When
an electron is excited to the conduction band, it leaves an empty state in the valence
band. This empty state now behaves like a particle itself and is called a hole. Therefore
an excitation can be regarded as a creation of two particles, similar to the creation of
particle-antiparticle pairs in particle physics.

Use this scheme to interpret the calculated internal energy in terms of the equipartition
law for an ideal gas. How many electrons are in the conduction band?
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