Prof. Manfred Sigrist

Exercise 1. Condensation and crystallization in the lattice gas model.

The lattice gas model is obtained by dividing the volume V into microscopic cells which are assumed to be small such that they contain at most one gas molecule. The result is a square lattice in two dimensions and a cubic lattice in three dimensions. We neglect the kinetic energy of a molecule and assume that only nearest neighbors interact. The total energy is given by

$$H = -\lambda \sum_{\langle i,j \rangle} n_i n_j \tag{1}$$

where the sum runs over nearest-neighbor pairs and λ is the nearest-neighbor coupling. There is at most one particle in each cell ($n_i = 0$ or 1). This model is a simplification of hard-core potentials, like the Lennard-Jones potential, characterized by an attractive interaction and a very short-range repulsive interaction that prevents particles from overlapping.

In order to study the case of a repulsive interaction, $\lambda < 0$, we divide the lattice into two alternating sublattices A and B. For square or cubic lattices, we find that all lattice sites A only have points in B as their nearest neighbors.

Figure 1: Schematic view of the lattice gas model.

- (a) First, show the equivalence of the grand canonical ensemble of the lattice gas model with the canonical ensemble of an Ising model in a magnetic field.
- (b) Introduce two mean-field parameters $m_{\rm A}$ and $m_{\rm B}$ and adapt the mean-field solution of the Ising model discussed in Sec. 5.2 of the lecture notes for these two parameters. What are the self-consistency conditions for $m_{\rm A}$ and $m_{\rm B}$?
- (c) Use your results from parts (a) and (b) to calculate the grand potential for the lattice gas and determine the self-consistency relations for the two mean-field parameters $\rho_{\rm A} = \langle n_i \rangle_{i \in {\rm A}}$ and $\rho_{\rm B} = \langle n_i \rangle_{i \in {\rm B}}$.

In the following we will use the mean-field solution of the lattice gas model in order to discuss the liquid-gas transition for an attractive interaction $\lambda > 0$.

(d) Argue, why in this case the mean-field results can be simplified as the two densities must be equal, $\rho_{\rm A} = \rho_{\rm B} = \rho$. Use your knowledge of the Ising model to define a critical temperature $T_{\rm c}$, below which there are multiple solutions to the self-consistency equations, and discuss the solutions of ρ for temperatures above or below $T_{\rm c}$. Define also the critical chemical potential μ_0 corresponding to h=0 in the Ising model and use this for a distinction of cases.

(e) Find the equation of state $p=p(T,\rho)$ or p=p(T,v) and discuss the liquid-gas transition in the p-v diagram. Thereby, $v=1/\rho$ is the specific volume. Compare with the van der Waals equation of state:

$$\left(p + \frac{\tilde{a}}{v^2}\right) \left(v - \tilde{b}\right) = k_{\rm B}T.$$

Hint. For the lattice gas, the volume is given by the total number of lattice sites, $N_{\rm L}$.

(f) Find the phase diagram (T - p diagram). Determine the phase boundary $(T, p_c(T))$ and, in particular, compute the critical point $(T_c, p_c(T_c))$.

Instead of the liquid-gas transition, which we have observed for an attractive interaction $\lambda > 0$, a crystallization transition (sublimation) can be observed for nearest-neighbor repulsion, $\lambda < 0$. In this case, we will find that the two mean-field parameters are different, $\rho_A \neq \rho_B$, below some critical temperature T_c .

(g) Discuss the solutions above and below the critical temperature for $\lambda < 0$. Plot the densities $\rho_{\rm A}$ and $\rho_{\rm B}$, as well as the average, $(\rho_{\rm A} + \rho_{\rm B})/2$ for both attractive and repulsive nearest-neighbor interaction at low temperature, $T < T_{\rm c}$. Interpret the result in terms of compressibility.