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Exercise 10.1 Teleportation Redux

(a) Show that for the entangled state |Φ〉 = 1√
2

(|00〉+ |11〉) and any unitary operator U ,(
UA ⊗ UB

)
|Φ〉AB = |Φ〉AB ,

where denotes complex conjugation in the |0〉, |1〉 basis.

(UA ⊗ U∗B) |Φ〉AB =
1√
2

∑
jk`mt

UjkU
∗
`m (|j〉〈k|A ⊗ |`〉〈m|B) |t, t〉AB

=
1√
2

∑
j`t

UjtU
∗
`t|j, `〉AB =

1√
2

∑
j`

|j, `〉AB

∑
t

Ujt(U
†)t`

=
1√
2

∑
j`

|j, `〉AB

[
UU†

]
j`

=
1√
2

∑
j

|j, j〉AB = |Φ〉AB

(b) Show that for any state |ψ〉

A〈ψ|Φ〉AB = 1√
2
|ψ∗〉B .

A〈ψ||Φ〉AB =
1√
2

∑
jk

ψ∗j 〈j||k〉A|k〉B =
1√
2

∑
k

ψ∗k|k〉B =
1√
2
|ψ∗〉B (1)

(c) Use the results of (a) and (b) to give a derivation of the teleportation protocol without resorting to
components.

Alice and Bob start out with the state |ψ〉A′ |Φ〉AB , where Alice holds systems A and A′ and Bob B.
When Alice measures A′A in the Bell basis |Φj〉 = (1⊗ σj) |Φ〉, obtaining result j, the resulting state of
|ψ′j〉B Bob’s system is

|ψ′j〉B = A′A〈Φj | (|ψ〉A′ |Φ〉AB) = A′A〈Φ|
(
1A′ ⊗ (σ†j )A ⊗ 1B

)
|ψ〉A′ |Φ〉AB

= A′A〈Φ|
(
1A′ ⊗ 1A ⊗ (σ∗j )B

)
|ψ〉A′ |Φ〉AB = 1√

2A
〈ψ∗|

(
1A ⊗ (σ∗j )B

)
|Φ〉AB

= 1
2 (σ∗j )B |ψ〉B = 1

2 (σj)B |ψ〉B .

(The last equality follows since σx and σz have real entries, σ∗y = −σy, and we don’t care about overall
phases.) Alice then tells Bob the j she obtained in the measurement (which takes two bits of communi-
cation), and then he applies σT

j to get |ψ〉.

(d) What happens if Alice and Bob use the state (1A⊗UB)|Φ〉AB for teleportation? Or if Alice measures in
the basis UA′ |Φj〉A′A?
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In the first case we have

|ψ′j〉B = A′A〈Φj | (|ψ〉A′UB |Φ〉AB) = A′A〈Φ|
(
1A′ ⊗ (σ†j )A ⊗ UB

)
|ψ〉A′ |Φ〉AB

= A′A〈Φ|
(
1A′ ⊗ 1A ⊗ (Uσ∗j )B

)
|ψ〉A′ |Φ〉AB = 1

2 (Uσ∗j )B |ψ〉B .

After Bob receives Alice’s message and applies σT
j they end up with the state |ψ′′j 〉 = (σT

j Uσ
∗
j )|ψ〉. For

the second case

|ψ′j〉B = A′A〈Φj |UA′ (|ψ〉A′UB |Φ〉AB) = A′A〈Φj | (|Uψ〉A′UB |Φ〉AB) = 1
2 (σ∗jU)B |ψ〉B .

Now Bob’s correction operation produces |ψ′′〉 = U |ψ〉. This is an important result, because it shows
that it is possible to perform an arbitrary single-qubit operation solely by measuring an appropriately
prepared state.

(e) Instead of a single system state |ψ〉A′ , Alice has a bipartite state |ψ〉A1A2 . What happens if she performs
the teleportation protocol on system A2?

Work with the Schmidt decomposition: |ψ〉A1A2
=
∑

k

√
pk|αk〉A1

|βk〉A2
. Then following the same

calculation above we get

|ψ′j〉A1B = A2A〈Φj | (|ψ〉A1A2
|Φ〉AB) =

∑
k

√
pk A2A〈Φj |(|αk〉A1

|βk〉A2
|Φ〉AB)

=
∑
k

√
pk|αk〉A1 A2A〈Φj |(|βk〉A2

|Φ〉AB) = 1
2

∑
k

√
pk|αk〉A1

(σ∗j )B |βk〉B

= 1
2 (σ∗j )B |ψ〉A1B .

Once again Bob can undo the σ∗j on system B and thus teleportation can also faithfully transfer part of
a larger, entangled system.

Exercise 10.2 Remote Copy

Alice and Bob would like to create the state |Ψ〉AB = a|00〉AB + b|11〉AB from Alice’s state |ψ〉A = a|0〉A +
b|1〉A, a “copy” in the quantum-mechanical sense. Additionally, they share the canonical entangled state |Φ〉.
Can they create the desired state by performing only local operations (measurements and unitary operators),
provided Alice can only send one bit of classical information to Bob?
By the solution to part (e) of the previous problem, Alice could create the copied state herself using the
CNOT gate UCNOT|j, k〉 = |j, j⊕k〉 and then teleport half of it to Bob. However, this would take two bits of
communication. Suppose Alice copies |ψ〉A to her half of the maximally entangled state |Φ〉A′B . This results
in

UAA′

CNOT|ψ〉A|Φ〉A′B = 1√
2

(a|000〉+ a|011〉+ b|110〉+ b|101〉)AA′B

= 1√
2

[(a|00〉+ b|11〉)AB |0〉A′ + (a|01〉+ b|10〉)AB |1〉A′ ]

= 1√
2

(|Ψ〉AB |0〉A′ + (σx)B |Ψ〉AB |1〉A′) .

As in teleportation, this creates the desired output state, up to the action of a Pauli operator on Bob’s
system which is indexed by an orthogonal state at Alice’s end. By measuring system A′ and telling Bob the
result (using just one bit since there are only two outcomes) he can undo the Pauli operator to create |Ψ〉AB .

Exercise 10.3 Quantum mutual information

Consider a composed system A⊗B ⊗ C with a shared state ρABC .
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In a first step we ignore system C and consider only A⊗B (and the reduced state ρAB = TrC(ρABC)). One
way of quantifying the correlations between A and B is to use the mutual information between them, defined
as

I(A : B) = H(A) +H(B)−H(AB) (2)

= H(A)−H(A|B). (3)

If we have access to C, we can define a conditional version of the mutual information between A and B as

I(A : B|C) = H(A|C) +H(B|C)−H(AB|C) (4)

= H(A|C)−H(A|BC). (5)

(a) Assume a system formed by two qubits A and B that share a state ρAB. Consider bases {|0〉A, |1〉A} and
{|0〉B , |1〉B} for the subsystems of each qubit.

1. Check that the mutual information of the fully entangled state , |Ψ+〉 = 1√
2

(|00〉+ |11〉), is maximal.

The global state is pure and the reduced states on A and B are both fully mixed, ρA = ρB = 1/2,
so we have

H(AB) = 0, H(A) = H(B) = 1 ⇒ I(A : B) = 2,

which is maximal, because the entropy of a single qubit is at most log |HA| = 1, as we saw in
exercise 11.2, and the entropy of the joint state is always non negative.

2. See that for classically correlated states, ρAB = p|0〉〈0|0A ⊗ σ0
B + (1 − p)|1〉〈1|1A ⊗ σ1

B (where
0 ≤ p ≤ 1), the mutual information cannot be greater than one.

We can rewrite the mutual information as

I(A : B) = H(A)︸ ︷︷ ︸
≤1

−H(A|B)︸ ︷︷ ︸
≥0(∗)

≤ 1

where (∗) comes from exercise 11.1.b)3.

(b) Consider the so-called cat state shared by four qubits, A⊗B ⊗ C ⊗D, that is defined as

|,〉 =
1√
2

(|0000〉+ |1111〉) . (6)

Check how the mutual information between qubits A and B changes with the knowledge of the remaining
qubits, namely:

1. I(A : B) = 1.

2. I(A : B|C) = 0.

3. I(A : B|CD) = 1.

The reduced states of the system for k qubits (which are independent of the qubits traced out) have
entropies denoted by hk, given as follows:

ρ4 = |,〉〈,|, ⇒ h4 = 0,

ρ3 =
1

2
(|000〉〈000|000 + |111〉〈111|111) ⇒ h3 = 1,

ρ2 =
1

2
(|00〉〈00|00 + |11〉〈11|11) ⇒ h2 = 1,

ρ1 =
1

2
(|0〉〈0|0 + |1〉〈1|1) ⇒ h1 = 1.
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The mutual information between A and B given the knowledge of other qubits comes

I(A : B) = H(A) +H(B)−H(AB)

= h1 + h1 − h2 = 1,

I(A : B|C) = H(A|C) +H(B|C)−H(AB|C)

= H(AC)−H(C) +H(BC)−H(C)−H(ABC) +H(C)

= h2 − h1 + h2 − h1 − h3 + h1 = 0,

I(A : B|CD) = H(A|CD) +H(B|CD)−H(AB|CD)

= H(ACD)−H(CD) +H(BCD)−H(CD)−H(ABCD) +H(CD)

= h3 − h2 + h3 − h2 − h4 + h2 = 1.
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