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Exercise 11.1 Information measures bonanza

Take a system A in state p. Non-conditional quantum min- and maz-entropies are given by

Humin(A), = —log max A, Himax(A), = log rank(p).
A€spec(p)

The mutual information measures correlations between two systems. For pap, we have

I(A:B), =H(A), + H(B), — H(AB),
= H(A), — H(A|B),.

Show that if spec(p) < spec(T), then the entropy of p is larger than or equal to the entropy of T, for the von
Neumann, min- and maz-entropies. spec(p) < spec(T) means that spec(T) majorizes spec(p). See exercise
7.8 for more details.

For simplicity, we define again 7 = spec(p) and ¢ = spec(7), with the eivenvalues in decreasing order, and
the sum-vectors from the previous exercise, R: Ry = Zi:l r;. We have
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> wPeH(A),, . If spec(p) < spec(r), we know that there exist {Uy, pi}, such that p = kakUkTU,I. The
von Neumann entropy for state p is

To prove that the same holds for the von Neumann entropy, we make use of its concavity, H (A)Zk pepr >

H(A)P = H(A)Zk pkUkTU]I

= ZpkH(A)UkTU]I
k

=> prH(A),
k

= H(A)T

Exercise 11.2 Davies’ Theorem

Consider an arbitrary CQ state o*P =3 p,|z) (x| ® pP and imagine making a measurement M having
elements E, on B. By the Holevo bound, I(X:Y) < I(X:B) = S(3_, P2pz) — 2., P25(pz). Define the
accessible information I..(0*B) = maxy I[(X : Y).

Show that the optimal measurement consists of rank-one elements and has no more than d* outcomes, where
d = dim(B). Hint: the space of Hermitian operators on B is a vector space of size d>.



Let us assume that the POVM set is mixed, such that £, = pEél) +(1- p)E@(JZ), where {E?(ll)} and {E?(lz)}
are themselves valid POVM sets. Now let us measure the quantum part of the CQ state with this POVM.:
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Here, we have introduced a fictitious system S such that tr[og|0)(0|] = p and tr[og|1)(1|] = 1 — p. It follows
that for the mixed POVM sets finding the accessible informaton I(X : Y)aq, after measuring the quantum
system B is equivalent to the accessible information I(X : Y S)a,, after measuring the quantum system
B and the fictitious system S and tracing out over S. Since tracing out reduces the mutual information
(I(X:Y) < I(X:YZ)), the most optimal case is when we do not have to trace the system S out, that is,
when the POVM set is not mixed.

It remains to prove that we have a mixed POVM set. If we have a measurement M with n > d? elements
E,, there must exist a set of g, # 0 such that }° ¢, FE, = 0 (Ey linearly dependent), which can be rescaled
without loss of generality so that —1 < g, < 1. Defining the measurements My = {(1 + ¢,)E,}, which
really are measurements since -, (1% g,)E, = 1, we have M = LMy +M).

Exercise 11.3 Quantum Data Processing Inequality

Consider two CPTP maps $1 and $2 acting on system Q. Call the initial state of Q p®, the output of the
first map p@ = $(p?) and the output of the second map p? = $3 0 $1(p?). Purifying the initial state with
a system R and using the Stinespring dilations of the CPTP maps, we can regard this transformation as
taking the pure state UEQ to VRQEr gnd then to \I/RQ”ElEZ’, where By (Es) is the environment of the first
(second) map, so that EyFEs is the environment of the concatenated map $5 0 $1. Now define the coherent
information I(A)B) = —S(A|B). Show that

S(Q) > I(R)Q') > I(R)Q").

Hint: use (strong) subadditivity.

It has been shown in the lectures that for any bipartite pure state ¢xy, the entropy of the marginals is
equal, i.e. H(X) = H(Y). This result directly follows from Schmidt decomposition of the state. Note that
this result can be used for any pure states, by imagining that it is a bipartite state. We will use, for example,
that H(B) = H(AC) for a pure state ¥ apc.

The first inequality follows from subadditivity and the second from strong subadditivity. Observe that if C'
purifies AB, then —S(A|B) = —S(AB) + S(B) = —=S(C) + S(AC) = S(A|C), so I(A)B) = S(A|C). In the
current context we have I(R)Q') = S(R|E1) < S(R) = S(Q), where the last steps follow from the facts that
system R is not involved in the transformation and system R( is pure. For the second inequality we use
strong subadditivity: I(R)Q") = —S(R|E1E2) > —S(R|E1) = I(R)Q').



