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Exercise 11.1 Information measures bonanza

Take a system A in state ρ. Non-conditional quantum min- and max-entropies are given by

Hmin(A)ρ = − log max
λ∈spec(ρ)

λ, Hmax(A)ρ = log rank(ρ).

The mutual information measures correlations between two systems. For ρAB, we have

I(A : B)ρ = H(A)ρ +H(B)ρ −H(AB)ρ

= H(A)ρ −H(A|B)ρ.

Show that if spec(ρ) ≺ spec(τ), then the entropy of ρ is larger than or equal to the entropy of τ , for the von
Neumann, min- and max-entropies. spec(ρ) ≺ spec(τ) means that spec(τ) majorizes spec(ρ). See exercise
7.3 for more details.

For simplicity, we define again ~r = spec(ρ) and ~t = spec(τ), with the eivenvalues in decreasing order, and

the sum-vectors from the previous exercise, ~R : Rk =
∑k
i=1 ri. We have

~r ≺ ~t⇒ r1 ≤ t1 ⇔ Hmin(A)ρ ≥ Hmin(A)τ X

~R. ≤ ~T ∧Rn = Tn = 1⇒
∣∣∣{1’s in ~R

}∣∣∣ ≤ ∣∣∣{1’s in ~T
}∣∣∣⇔ |{0’s in ~r}| − 1 ≤

∣∣{0’s in ~t
}∣∣− 1 ∗

⇔ rk(ρ) ≥ rk(τ)⇔ Hmax(A)ρ ≥ Hmax(A)τ X

* you can check the example from the last exercise to see that the number of ones in ~R equals the number
of zeros in ~r minus one.
To prove that the same holds for the von Neumann entropy, we make use of its concavity, H(A)∑

k pkρk
≥∑

k pkH(A)ρk . If spec(ρ) ≺ spec(τ), we know that there exist {Uk, pk}k such that ρ =
∑
k pkUkτU

†
k . The

von Neumann entropy for state ρ is

H(A)ρ = H(A)∑
k pkUkτU

†
k

≥
∑
k

pkH(A)UkτU
†
k

=
∑
k

pkH(A)τ (entropy is invariant under unitaries)

= H(A)τ .

Exercise 11.2 Davies’ Theorem

Consider an arbitrary CQ state σXB =
∑
x px|x〉〈x|X ⊗ ρBx and imagine making a measurement M having

elements Ey on B. By the Holevo bound, I(X:Y ) ≤ I(X:B) = S(
∑
x pxρx) −

∑
x pxS(ρx). Define the

accessible information Iacc(σ
XB) = maxM I(X : Y ).

Show that the optimal measurement consists of rank-one elements and has no more than d2 outcomes, where
d = dim(B). Hint: the space of Hermitian operators on B is a vector space of size d2.
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Let us assume that the POVM set is mixed, such that Ey = pE
(1)
y + (1− p)E(2)

y , where {E(1)
y } and {E(2)

y }
are themselves valid POVM sets. Now let us measure the quantum part of the CQ state with this POVM:

MB σXB = (1⊗ Ey)σXB =
∑
xy

px|x〉〈x|X ⊗ |y〉〈y|Btr[ρBx Ey]

=
∑
xy

px|x〉〈x|X ⊗ |y〉〈y|B(p tr[ρBx E
(1)
y ] + (1− p) tr[ρBx E

(2)
y ])

=
∑
xyz

px|x〉〈x|X ⊗ |y〉〈y|B ⊗ |z〉〈z|Str[ρBx ⊗ σSz Ezy ])

= trS [MBS σXB ⊗ σS ]

Here, we have introduced a fictitious system S such that tr[σS |0〉〈0|] = p and tr[σS |1〉〈1|] = 1− p. It follows
that for the mixed POVM sets finding the accessible informaton I(X : Y )MB

after measuring the quantum
system B is equivalent to the accessible information I(X : Y S)MBS

after measuring the quantum system
B and the fictitious system S and tracing out over S. Since tracing out reduces the mutual information
(I(X:Y ) ≤ I(X:Y Z)), the most optimal case is when we do not have to trace the system S out, that is,
when the POVM set is not mixed.

It remains to prove that we have a mixed POVM set. If we have a measurement M with n > d2 elements
Ey, there must exist a set of qy 6= 0 such that

∑
y qyEy = 0 (Ey linearly dependent), which can be rescaled

without loss of generality so that −1 ≤ qy ≤ 1. Defining the measurements M± = {(1 ± qy)Ey}, which
really are measurements since

∑
y(1± qy)Ey = 1, we have M = 1

2 (M+ +M−).

Exercise 11.3 Quantum Data Processing Inequality

Consider two CPTP maps $1 and $2 acting on system Q. Call the initial state of Q ρQ, the output of the
first map ρQ

′
= $(ρQ) and the output of the second map ρQ

′′
= $2 ◦ $1(ρQ). Purifying the initial state with

a system R and using the Stinespring dilations of the CPTP maps, we can regard this transformation as
taking the pure state ΨRQ to ΨRQ′E1 and then to ΨRQ′′E1E2 , where E1 (E2) is the environment of the first
(second) map, so that E1E2 is the environment of the concatenated map $2 ◦ $1. Now define the coherent
information I(A〉B) = −S(A|B). Show that

S(Q) ≥ I(R〉Q′) ≥ I(R〉Q′′).

Hint: use (strong) subadditivity.

It has been shown in the lectures that for any bipartite pure state φXY , the entropy of the marginals is
equal, i.e. H(X) = H(Y ). This result directly follows from Schmidt decomposition of the state. Note that
this result can be used for any pure states, by imagining that it is a bipartite state. We will use, for example,
that H(B) = H(AC) for a pure state ψABC .

The first inequality follows from subadditivity and the second from strong subadditivity. Observe that if C
purifies AB, then −S(A|B) = −S(AB) + S(B) = −S(C) + S(AC) = S(A|C), so I(A〉B) = S(A|C). In the
current context we have I(R〉Q′) = S(R|E1) ≤ S(R) = S(Q), where the last steps follow from the facts that
system R is not involved in the transformation and system RQ is pure. For the second inequality we use
strong subadditivity: I(R〉Q′′) = −S(R|E1E2) ≥ −S(R|E1) = I(R〉Q′).
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