Quantum Information Theory Solutions 11

HS 13 Dr. J.M. Renes

Exercise 11.1 Information measures bonanza

Take a system A in state ρ . Non-conditional quantum min- and max-entropies are given by

$$H_{\min}(A)_{\rho} = -\log \max_{\lambda \in \operatorname{spec}(\rho)} \lambda, \qquad H_{\max}(A)_{\rho} = \log \operatorname{rank}(\rho).$$

The mutual information measures correlations between two systems. For ρ_{AB} , we have

$$I(A:B)_{\rho} = H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}$$

= $H(A)_{\rho} - H(A|B)_{\rho}$.

Show that if $\operatorname{spec}(\rho) \prec \operatorname{spec}(\tau)$, then the entropy of ρ is larger than or equal to the entropy of τ , for the von Neumann, min- and max-entropies. $\operatorname{spec}(\rho) \prec \operatorname{spec}(\tau)$ means that $\operatorname{spec}(\tau)$ majorizes $\operatorname{spec}(\rho)$. See exercise 7.3 for more details.

For simplicity, we define again $\vec{r} = \operatorname{spec}(\rho)$ and $\vec{t} = \operatorname{spec}(\tau)$, with the eivenvalues in decreasing order, and the sum-vectors from the previous exercise, $\vec{R} : R_k = \sum_{i=1}^k r_i$. We have

$$\vec{r} \prec \vec{t} \Rightarrow r_1 \leq t_1 \Leftrightarrow H_{\min}(A)_{\rho} \geq H_{\min}(A)_{\tau} \quad \checkmark$$

$$\vec{R}. \leq \vec{T} \land R_n = T_n = 1 \Rightarrow \left| \left\{ 1 \text{'s in } \vec{R} \right\} \right| \leq \left| \left\{ 1 \text{'s in } \vec{T} \right\} \right| \Leftrightarrow \left| \left\{ 0 \text{'s in } \vec{r} \right\} \right| - 1 \leq \left| \left\{ 0 \text{'s in } \vec{t} \right\} \right| - 1 \quad *$$

$$\Leftrightarrow \text{rk}(\rho) \geq \text{rk}(\tau) \Leftrightarrow H_{\max}(A)_{\rho} \geq H_{\max}(A)_{\tau} \quad \checkmark$$

* you can check the example from the last exercise to see that the number of ones in \vec{R} equals the number of zeros in \vec{r} minus one.

To prove that the same holds for the von Neumann entropy, we make use of its concavity, $H(A)_{\sum_k p_k \rho_k} \ge \sum_k p_k H(A)_{\rho_k}$. If $\operatorname{spec}(\rho) \prec \operatorname{spec}(\tau)$, we know that there exist $\{U_k, p_k\}_k$ such that $\rho = \sum_k p_k U_k \tau U_k^{\dagger}$. The von Neumann entropy for state ρ is

$$\begin{split} H(A)_{\rho} &= H(A)_{\sum_{k} p_{k} U_{k} \tau U_{k}^{\dagger}} \\ &\geq \sum_{k} p_{k} H(A)_{U_{k} \tau U_{k}^{\dagger}} \\ &= \sum_{k} p_{k} H(A)_{\tau} \quad \text{(entropy is invariant under unitaries)} \\ &= H(A)_{\tau}. \end{split}$$

Exercise 11.2 Davies' Theorem

Consider an arbitrary CQ state $\sigma^{XB} = \sum_{x} p_{x} |x\rangle \langle x|^{X} \otimes \rho_{x}^{B}$ and imagine making a measurement \mathcal{M} having elements E_{y} on B. By the Holevo bound, $I(X:Y) \leq I(X:B) = S(\sum_{x} p_{x} \rho_{x}) - \sum_{x} p_{x} S(\rho_{x})$. Define the accessible information $I_{\text{acc}}(\sigma^{XB}) = \max_{\mathcal{M}} I(X:Y)$.

Show that the optimal measurement consists of rank-one elements and has no more than d^2 outcomes, where $d = \dim(B)$. Hint: the space of Hermitian operators on B is a vector space of size d^2 .

Let us assume that the POVM set is mixed, such that $E_y = pE_y^{(1)} + (1-p)E_y^{(2)}$, where $\{E_y^{(1)}\}$ and $\{E_y^{(2)}\}$ are themselves valid POVM sets. Now let us measure the quantum part of the CQ state with this POVM:

$$\mathcal{M}_{\mathcal{B}} \, \sigma_{XB} = (\mathbb{1} \otimes E_{y}) \sigma_{XB} = \sum_{xy} p_{x} |x\rangle \langle x|^{X} \otimes |y\rangle \langle y|^{B} \mathrm{tr}[\rho_{x}^{B} E_{y}]$$

$$= \sum_{xy} p_{x} |x\rangle \langle x|^{X} \otimes |y\rangle \langle y|^{B} (p \, \mathrm{tr}[\rho_{x}^{B} E_{y}^{(1)}] + (1-p) \, \mathrm{tr}[\rho_{x}^{B} E_{y}^{(2)}])$$

$$= \sum_{xyz} p_{x} |x\rangle \langle x|^{X} \otimes |y\rangle \langle y|^{B} \otimes |z\rangle \langle z|^{S} \mathrm{tr}[\rho_{x}^{B} \otimes \sigma_{z}^{S} E_{y}^{z}])$$

$$= \mathrm{tr}_{S}[\mathcal{M}_{BS} \, \sigma_{XB} \otimes \sigma_{S}]$$

Here, we have introduced a fictitious system S such that $\operatorname{tr}[\sigma_S|0\rangle\langle 0|] = p$ and $\operatorname{tr}[\sigma_S|1\rangle\langle 1|] = 1 - p$. It follows that for the mixed POVM sets finding the accessible information $I(X:Y)_{\mathcal{M}_B}$ after measuring the quantum system B is equivalent to the accessible information $I(X:YS)_{\mathcal{M}_{BS}}$ after measuring the quantum system B and the fictitious system S and tracing out over S. Since tracing out reduces the mutual information $I(X:Y) \leq I(X:YZ)$, the most optimal case is when we do not have to trace the system S out, that is, when the POVM set is not mixed.

It remains to prove that we have a mixed POVM set. If we have a measurement \mathcal{M} with $n>d^2$ elements E_y , there must exist a set of $q_y\neq 0$ such that $\sum_y q_y E_y=0$ (E_y linearly dependent), which can be rescaled without loss of generality so that $-1\leq q_y\leq 1$. Defining the measurements $\mathcal{M}_{\pm}=\{(1\pm q_y)E_y\}$, which really are measurements since $\sum_y (1\pm q_y)E_y=1$, we have $\mathcal{M}=\frac{1}{2}(\mathcal{M}_++\mathcal{M}_-)$.

Exercise 11.3 Quantum Data Processing Inequality

Consider two CPTP maps $\$_1$ and $\$_2$ acting on system Q. Call the initial state of Q ρ^Q , the output of the first map $\rho^{Q'} = \$(\rho^Q)$ and the output of the second map $\rho^{Q''} = \$_2 \circ \$_1(\rho^Q)$. Purifying the initial state with a system R and using the Stinespring dilations of the CPTP maps, we can regard this transformation as taking the pure state Ψ^{RQ} to $\Psi^{RQ'E_1}$ and then to $\Psi^{RQ''E_1E_2}$, where E_1 (E_2) is the environment of the first (second) map, so that E_1E_2 is the environment of the concatenated map $\$_2 \circ \$_1$. Now define the coherent information I(A)B = -S(A|B). Show that

$$S(Q) \ge I(R \rangle Q') \ge I(R \rangle Q'').$$

Hint: use (strong) subadditivity.

It has been shown in the lectures that for any bipartite pure state ϕ_{XY} , the entropy of the marginals is equal, i.e. H(X) = H(Y). This result directly follows from Schmidt decomposition of the state. Note that this result can be used for any pure states, by imagining that it is a bipartite state. We will use, for example, that H(B) = H(AC) for a pure state ψ_{ABC} .

The first inequality follows from subadditivity and the second from strong subadditivity. Observe that if C purifies AB, then -S(A|B) = -S(AB) + S(B) = -S(C) + S(AC) = S(A|C), so I(A B) = S(A|C). In the current context we have $I(R Q') = S(R|E_1) \leq S(R) = S(Q)$, where the last steps follow from the facts that system R is not involved in the transformation and system RQ is pure. For the second inequality we use strong subadditivity: $I(R Q'') = -S(R|E_1E_2) \geq -S(R|E_1) = I(R Q')$.