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Exercise 6.1 Classical capacity of the depolarizing channel

Consider the depolarizing channel we have treated before, that is described by the CPTP map:

a)

b)

¢)

E,:S(Ha)— S(HB)

1
p—rpy+d=pp.
Now we will see what happens when we use this quantum channel to send classical informa-
tion. We start with an arbitrary input probability distribution Px(0) = ¢, Px(1) =1 —gq.
We encode this distribution in a state px = ¢ |0)(0| + (1 — ¢)|1)(1]. Now we send px over
the quantum channel, i.e., we let it evolve under E},. Finally, we measure the output state,
py = Ep(px) in the computational basis.

Compute the conditional probabilities {Py‘ X:z(y)}my.

Maximize the mutual information over ¢ to find the classical channel capacity of the
depolarizing channel.

What happens to the channel capacity if we measure the final state in a different basis?

Exercise 6.2 A sufficient entanglement criterion

In general it is very hard to determine if a state is entangled or not. In this exercise we will
construct a simple entanglement criterion that works fine at least in low dimensions.

a)
b)

Show that the transpose is a positive operation, and that it is basis-dependent.

Let p € End(Ha ® Hp) be a separable state, and let A4 be a positive operator on H 4.
Show that A4 ® 1 p maps p to a positive operator.

The task of characterizing the sets of separable states then reduces to finding a suitable

positive map that distinguishes between separable and entangled states.

Show that the transpose is a probable candidate by testing it on a Werner state (impure
singlet)

W =z[p7) (7| + (1 —2) 1/4,

where x € [0,1] and |¢p7) = %(|00) —|11)). What happens to the eigenvalues of W when
you apply transpose® 1g 7
Remark: Indeed, it can be shown that the PPT (positive partial transpose) criterion is

necessary and sufficient for systems of dimension 2 x 2 and 2 x 3.

Show that although the partial transpose is basis-dependent, the corresponding eigenvalues
are independent under local basis-transformations.



Exercise 6.3 Uncertainty Principle

Let p be a density operator, A and B observables, and ¢ € R. Show that

o (A+itB)p(A+itB)* is positive (Alternatively, show directly that ((A + itB)(A +itB)*)
is positive)

i 4<A2>p<B2>p > ’<[A7B]>p|2

Hence deduce the Uncertainty Principle A,[P]?A,[X]? > 152,

Exercise 6.4 Stinespring Isometry

(Extra question) Show the existence of the Stinespring isometry directly from the Choi state.



