## **Classical statistical physics - Gibbsian concept**

example: gas of N particles with Hamiltonian  $\mathcal{H}(p,q)$  $\Gamma$  6N-dimensional phase space  $(p,q)=(p_1,\ldots,p_{3N},q_1,\ldots,q_{3N})$ 

equation of motion: 
$$\dot{p}_i = -\frac{\partial \mathcal{H}}{\partial q_i}$$
 and  $\dot{q}_i = \frac{\partial \mathcal{H}}{\partial p_i}$ 



## **Classical statistical physics - Gibbsian concept**

mean values in equilibrium

$$A(p,q) 
ightarrow \langle A 
angle$$

## time average

ensemble average

2

$$\langle A \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T A(p(t), q(t)) dt$$

$$\langle A 
angle = rac{\int dp dq A(p,q) 
ho(p,q)}{\int dp dq 
ho(p,q)}$$



isolated and closed system: fixed energy and particle number, ....

microcanonical phase space: system with fixed energy E, ....

- all states in phase space  $\Gamma$  within the energy interval  $[E,E+\delta E]$  with same probability
- volume of microcanonical phase space  $\omega(E)$  : "number" of all configurations in energy interval  $[E,E+\delta E]$

density function

3

Hamiltonian  
$$\mathcal{H}(\nu)$$
 $\omega(E) = \sum_{\nu \in \Gamma}^{E \leq \mathcal{H}(\nu) \leq E + \delta E}$   
 $\nu \in \Gamma$  $\rho(\nu) = \begin{cases} \text{const.} & E \leq \mathcal{H}(\nu) \leq E + \delta E \\ 0 & \text{otherwise} \end{cases}$  $\nu \in \Gamma$   
state of systemsentropy: $S(E) = k_B \ln \omega(E)$ 

## Classical statistical physics - microcanonical ensemble

example: gas of particles with natural variables (*E*, *V*, *N*)  $\mathcal{H}(p,q) \qquad (p,q) = (p_1, \dots, p_{3N}, q_1, \dots, q_{3N})$  in  $\Gamma$ 



5

composite systems of 2 subsystems:



$$\frac{\partial \omega_{1}(E',V',N')\omega_{2}(E-E',V-V',N-N')}{\partial E'}\Big|_{E'=E'_{0},V'=V'_{0},N'=N'_{0}} = 0$$

$$\frac{\partial \omega_{1}(E',V',N')\omega_{2}(E-E',V-V',N-N')}{\partial V'}\Big|_{E'=E'_{0},V'=V'_{0},N'=N'_{0}} = 0$$

$$\frac{\partial \omega_{1}(E',V',N')\omega_{2}(E-E',V-V',N-N')}{\partial N'}\Big|_{E'=E'_{0},V'=V'_{0},N'=N'_{0}} = 0$$

$$\frac{\partial \omega_{1}(E',V',N')\omega_{2}(E-E',V-V',N-N')}{\partial N'}\Big|_{E'=E'_{0},V'=V'_{0},N'=N'_{0}} = 0$$

composite systems of 2 subsystems:

| 1              | ←→  | 2             | (E               | $E, V, N)  E = E_1$                                                        | $+E_2  V=V_1$                                                              | $+V_2  N = N_1 + N_2$                                           |
|----------------|-----|---------------|------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|
|                |     |               |                  | connect the two                                                            | systems                                                                    | equilibriation                                                  |
| $(E_1,V_1,N_1$ | ) ( | $E_2, V_2, N$ | 7 <sub>2</sub> ) | $\begin{split} \tilde{E}_1 &= E'_0 \\ \tilde{E}_2 &= E - E'_0 \end{split}$ | $\begin{split} \tilde{V}_1 &= V_0' \\ \tilde{V}_2 &= V - V_0' \end{split}$ | $egin{array}{l} N_1 = N_0' \ 	ilde{N}_2 = N - N_0' \end{array}$ |

$$\begin{aligned} \frac{\partial S_1}{\partial E_1}\Big|_{\tilde{E}_1,\tilde{V}_1,\tilde{N}_1} &= \frac{\partial S_2}{\partial E_2}\Big|_{\tilde{E}_2,\tilde{V}_2,\tilde{N}_2} \longrightarrow \frac{1}{T_1} = \frac{1}{T_2} \\ \frac{\partial S_1}{\partial V_1}\Big|_{\tilde{E}_1,\tilde{V}_1,\tilde{N}_1} &= \frac{\partial S_2}{\partial V_2}\Big|_{\tilde{E}_2,\tilde{V}_2,\tilde{N}_2} \longrightarrow \frac{p_1}{T_1} = \frac{p_2}{T_2} \\ \frac{\partial S_1}{\partial N_1}\Big|_{\tilde{E}_1,\tilde{V}_1,\tilde{N}_1} &= \frac{\partial S_2}{\partial N_2}\Big|_{\tilde{E}_2,\tilde{V}_2,\tilde{N}_2} \longrightarrow \frac{\mu_1}{T_1} = \frac{\mu_2}{T_2} \end{aligned}$$

equilibrium parameters  $=T_2$ temperature  $= p_2$ pressure chem. pot.  $= \mu_2$ 

6