Prof. M. Gaberdiel

2.1. Open string endpoints motion

Consider the motion of a relativistic string with free endpoints. Use the explicit form of P^{σ}_{μ} to compute $P^{\sigma}_{\mu}P^{\sigma\mu}$, and show that the appropriate boundary conditions imply that the endpoints move at the speed of light. *Hint*: exploit the reparametrization invariance of the problem to choose a suitable gauge.

[For future reference: notice that the fact that the endpoints move at the speed of light is a straightforward consequence of the Virasoro constraints for the Polyakov action.]

2.2. Relativistic point particle

The action of a relativistic point particle is proportional to the length of its worldline, that is

$$S_{\rm rp} = -\alpha \int_{\gamma} \mathrm{d}s \,, \tag{2.1}$$

with the line element

$$ds^{2} = -\eta_{\mu\nu} dX^{\mu} dX^{\nu} = c^{2} dt^{2} - d\vec{x}^{2}, \qquad (2.2)$$

and α a constant to be determined. γ is the path between two points X_1^{μ} and X_2^{μ} , parametrized by a parameter τ . The action is then

$$S_{\rm rp} = -\alpha \int_{\gamma} d\tau \sqrt{-\eta_{\mu\nu} \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \tau}}.$$
 (2.3)

- a) What could the constant α be? Determine its value by first parametrizing the path by the time coordinate t and then taking the nonrelativistic limit $|\vec{v}| \ll c$; identify the first terms in the expansion. What happens when the mass of the particle vanishes?
- **b)** Derive the equations of motion by varying the action in eq. (2.3) (you may set c = 1 from now on). *Hint:* compute the canonically conjugate momentum P_{μ} , then explain the result.
- c) Show that the form of the action is invariant under reparametrizations $\tau' = \tau'(\tau)$.
- d) Suppose the relativistic particle is electrically charged with charge q. The coupling of the particle with an external electromagnetic potential A_{μ} is governed by the action

$$S_{e.m.} = \frac{q}{c} \int d\tau \, A_{\mu}(X) \, \frac{\partial X^{\mu}}{\partial \tau} \,. \tag{2.4}$$

Consider the action $S = S_{\rm rp} + S_{\rm e.m.}$ and find the equations of motion for the particle. *Hint*: compute the variation of the action under the variation of the path δX^{μ} (including the *full* variation of the second term); use P_{μ} from above to simplify the expressions.

e) Consider now the following action. We introduce an auxiliary field, an "einbein" e for the worldline metric and write the action as

$$S_{\rm p} = \int d\tau \left[e^{-1} \eta_{\mu\nu} \frac{\partial X^{\mu}}{\partial \tau} \frac{\partial X^{\nu}}{\partial \tau} - m^2 e \right]. \tag{2.5}$$

- **e.1**) Derive the equations of motion by varying the action w.r.t X and e.
- **e.2**) Show that the action S_p is equivalent to S_{rp} by solving for the einbein and substituting the solution back into the action. What is the advantage of S_p with respect to S_{rp} ?
- **e.3**) Consider an infinitesimal reparametrization $\delta \tau = -\epsilon(\tau)$. Show that the action is invariant under such transformation. *Hint:* the variation of the einbein is (check it!)

$$\delta e = \frac{\partial}{\partial \tau} [e \, \epsilon(\tau)] \,. \tag{2.6}$$