Exercise 1. Manifold S^2 , Part 1 i) Show that the 2-sphere, i.e. the surface $$S^2 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\},$$ is a differentiable manifold. To this end, consider the open cover $O_i^{\pm} := \{\pm x_i > 0\}$ of S^2 , and the maps $\psi_i^{\pm}: O_i^{\pm} \to D$, which project the open sets O_i^{\pm} to the open disc $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$, respectively. Show that the transition functions are smooth. [Hint: It is sufficient to show this for just one transition function.] ii) For this part use only the chart $\psi_1^+:(x_1,x_2,x_3)\mapsto (x_2,x_3)$. Find the components a^μ and b^μ of the two basis vectors $$X_u = \frac{\partial}{\partial u} = a^{\mu} \frac{\partial}{\partial x^{\mu}}, \qquad X_v = \frac{\partial}{\partial v} = b^{\mu} \frac{\partial}{\partial x^{\mu}}, \qquad \mu = 1, 2, 3$$ w.r.t. the partial derivatives of \mathbb{R}^3 by calculating $X_u(f|_{S^2})$ and $X_v(f|_{S^2})$ at a point $p \in S^2$, where f is a differentiable function on \mathbb{R}^3 , i.e., calculate $$X_u(f|_{S^2}) = \frac{\partial}{\partial u} (f \circ (\psi_1^+)^{-1})|_{\psi_1^+(p)} , \qquad X_v(f|_{S^2}) = \frac{\partial}{\partial v} (f \circ (\psi_1^+)^{-1})|_{\psi_1^+(p)} .$$ Furthermore, find the integral curves of the two basis vector fields by solving the equations $$\dot{\gamma}_u(t) = X_u(\gamma_u(t))$$, $\dot{\gamma}_v(t) = X_v(\gamma_v(t))$ for the differentiable curves $$\gamma_u(t) = (\gamma_{u1}(t), \gamma_{u2}(t), \gamma_{u3}(t)), \qquad \gamma_v(t) = (\gamma_{v1}(t), \gamma_{v2}(t), \gamma_{v3}(t)).$$ ## Exercise 2. Manifold S^2 , Part 2 Alternatively, one can define the manifold S^2 using the open sets $O_{\pm} = S^2 \setminus \{(0,0,\pm 1)\}$ and stereographic projections ϕ_{\pm} . The latter map a point $\vec{x} \in S^2$ to the intersection point of the x_1x_2 -plane with the line through \vec{x} and $(0,0,\pm 1)$, respectively. Determine the transition function between the two charts, and show that it is smooth. ## Exercise 3. Change of Basis in Tangent and Cotangent Space In the chart defined by the coordinate functions x^{μ} , the coordinate basis for the tangent space T_p is defined by $X_{\mu} = \partial_{\mu}$, and the corresponding dual basis of the cotangent space T_p^* is given by $\mathrm{d}x^{\mu}$. i) For a different chart, described by \tilde{x}^{μ} , express the corresponding basis vectors \widetilde{X}_{μ} and $d\tilde{x}^{\mu}$ in terms of X_{μ} and dx^{μ} , respectively. What is the transformation law of the corresponding components, i.e., writing $X = a^{\mu}X_{\mu}$ and $\omega = b_{\nu}dx^{\nu}$, what is the transformation law for the coefficients a^{μ} and b_{ν} ? ii) Let $\{e_{\sigma}\}$ be a basis and $\{e^{\sigma}\}$ its dual basis. The operation of contraction C of a tensor T with respect to the ith (dual vector) and jth (vector) slots may be defined as $$CT = T(\dots, e_{\sigma}^{\sigma}, \dots; \dots, e_{\sigma}, \dots) ,$$ $$\uparrow \\ i \qquad \qquad \uparrow \\ j \qquad \qquad (1)$$ (with summation over σ). Show that (1), and hence the operation of contraction, is independent of the choice of the basis $\{e_{\sigma}\}$.