

Exercise 1. Manifold S^2 , Part 1

i) Show that the 2-sphere, i.e. the surface

$$S^2 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\},$$

is a differentiable manifold. To this end, consider the open cover $O_i^{\pm} := \{\pm x_i > 0\}$ of S^2 , and the maps $\psi_i^{\pm}: O_i^{\pm} \to D$, which project the open sets O_i^{\pm} to the open disc $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$, respectively. Show that the transition functions are smooth. [Hint: It is sufficient to show this for just one transition function.]

ii) For this part use only the chart $\psi_1^+:(x_1,x_2,x_3)\mapsto (x_2,x_3)$. Find the components a^μ and b^μ of the two basis vectors

$$X_u = \frac{\partial}{\partial u} = a^{\mu} \frac{\partial}{\partial x^{\mu}}, \qquad X_v = \frac{\partial}{\partial v} = b^{\mu} \frac{\partial}{\partial x^{\mu}}, \qquad \mu = 1, 2, 3$$

w.r.t. the partial derivatives of \mathbb{R}^3 by calculating $X_u(f|_{S^2})$ and $X_v(f|_{S^2})$ at a point $p \in S^2$, where f is a differentiable function on \mathbb{R}^3 , i.e., calculate

$$X_u(f|_{S^2}) = \frac{\partial}{\partial u} (f \circ (\psi_1^+)^{-1})|_{\psi_1^+(p)} , \qquad X_v(f|_{S^2}) = \frac{\partial}{\partial v} (f \circ (\psi_1^+)^{-1})|_{\psi_1^+(p)} .$$

Furthermore, find the integral curves of the two basis vector fields by solving the equations

$$\dot{\gamma}_u(t) = X_u(\gamma_u(t))$$
, $\dot{\gamma}_v(t) = X_v(\gamma_v(t))$

for the differentiable curves

$$\gamma_u(t) = (\gamma_{u1}(t), \gamma_{u2}(t), \gamma_{u3}(t)), \qquad \gamma_v(t) = (\gamma_{v1}(t), \gamma_{v2}(t), \gamma_{v3}(t)).$$

Exercise 2. Manifold S^2 , Part 2

Alternatively, one can define the manifold S^2 using the open sets $O_{\pm} = S^2 \setminus \{(0,0,\pm 1)\}$ and stereographic projections ϕ_{\pm} . The latter map a point $\vec{x} \in S^2$ to the intersection point of the x_1x_2 -plane with the line through \vec{x} and $(0,0,\pm 1)$, respectively. Determine the transition function between the two charts, and show that it is smooth.

Exercise 3. Change of Basis in Tangent and Cotangent Space

In the chart defined by the coordinate functions x^{μ} , the coordinate basis for the tangent space T_p is defined by $X_{\mu} = \partial_{\mu}$, and the corresponding dual basis of the cotangent space T_p^* is given by $\mathrm{d}x^{\mu}$.

i) For a different chart, described by \tilde{x}^{μ} , express the corresponding basis vectors \widetilde{X}_{μ} and $d\tilde{x}^{\mu}$ in terms of X_{μ} and dx^{μ} , respectively. What is the transformation law of the corresponding components, i.e., writing $X = a^{\mu}X_{\mu}$ and $\omega = b_{\nu}dx^{\nu}$, what is the transformation law for the coefficients a^{μ} and b_{ν} ?

ii) Let $\{e_{\sigma}\}$ be a basis and $\{e^{\sigma}\}$ its dual basis. The operation of contraction C of a tensor T with respect to the ith (dual vector) and jth (vector) slots may be defined as

$$CT = T(\dots, e_{\sigma}^{\sigma}, \dots; \dots, e_{\sigma}, \dots) ,$$

$$\uparrow \\ i \qquad \qquad \uparrow \\ j \qquad \qquad (1)$$

(with summation over σ). Show that (1), and hence the operation of contraction, is independent of the choice of the basis $\{e_{\sigma}\}$.