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Exercise 1. Smooth min-entropy in the i.i.d. limit

The smooth min-entropy of a random variable X over X is defined as

Hε
min(X)P = max

QX∈Bε(PX)
Hmin(X)Q, (1)

where the maximum is taken over all probability distributions QX that are ε-close to PX . Fur-
thermore, we define an i.i.d. random variable ~X = {X1, X2, . . . , Xn} on X×n with P ~X(~x) =∏n
i=1 PX(xi).

Use the weak law of large numbers to show that the smooth min-entropy converges to the
Shannon entropy H(X) in the i.i.d. limit:

lim
ε→0

lim
n→∞

1

n
Hε

min( ~X)P ~X = H(X)PX . (2)

Exercise 2. An interpretation of the trace distance

We have introduced the trace distance of two probability distributions in exercise sheet 1 and
have shown that it is at least a reasonable distance measure in that it is positive and fulfils the
triangle inequality. In this exercise we show an important property of this measure which is
arguably the main reason why the trace distance is so frequently used, e.g. in security proofs of
cryptographic protocols.

Consider two random variables X and X ′ on the same alphabet X distributed PX and PX′ ,
respectively. The trace distance between them is δ(PX , PX′) =: ε. The goal is to show that
there exists a joint distribution of X and X ′, P̄XX′ , which is compatible with PX and PX′ and
has the property that

P̄ [X 6= X ′] ≤ ε. (3)

Compatibility here means that the marginals of P̄XX′ , P̄X and P̄X′ , coincide with PX and PX′ ,
respectively.

(a) Argue that for ε ∈ {0, 1} the statement is (almost) trivially true.

(b) From now on we assume 0 < ε < 1. For x ∈ X define

Pmin
X (x) :=

min{PX(x), PX′(x)}
1− ε

, P diff
X (x) :=

PX(x)− (1− ε)Pmin
X (x)

ε
and (4)

P diff
X′ (x) :=

PX′(x)− (1− ε)Pmin
X (x)

ε
. (5)

Check that Pmin
X , P diff

X and P diff
X′ are valid probability distributions on X .

(c) Construct a possible joint distribution P̄ as follows: throw a die with odds {1 − ε, ε}.
If the outcome corresponds to the probability 1 − ε distribute XX ′ s.t. X = X ′ and
X distributed Pmin

X . If not, let X and X ′ be independently distributed P diff
X and P diff

X′ ,
respectively. Check that P̄ is compatible with PX and PX′ and that P̄ [X 6= X ′] ≤ ε.
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Why is this way of interpreting the trace distance so helpful? Think ofX as an ideal system about
which we can make precise statements (e.g. about its security w.r.t. attacks from adversaries)
and about X ′ as the real system. First the special case ε = 0: suppose we found in our theoretical
analysis that the descriptions in terms of probability distributions of X and X ′ differ in trace
distance by zero, ε = 0. Then, by the above, we know that there exists a joint distribution P̄
describing both the ideal and the real system at the same time s.t. they never behave differently,
i.e. always X = X ′. In other words, with probability 1 the real system behaves ideally. In the
general case, when the trace distance between PX and PX′ can be bounded by some ε, the
statement that X ′ behaves like an ideal system still holds with probability 1− ε.

Exercise 3. Fano’s inequality

Given two random variables X and Y , how well can we predict X given Y ? Fano’s inequality
bounds the probability of error in such a prediction in terms of the conditional entropy H(X|Y ).
The goal of this exercise is to prove the inequality

Perror ≥
H(X|Y )− 1

log |X|
. (6)

(a) Representing the guess of X by the random variable X̂, which is some function, possibly
random, of Y , show that H(X|X̂) ≥ H(X|Y ).

(b) Consider the indicator random variable E which is 1 if X̂ 6= X and zero otherwise. Using
the chain rule we can express the conditional entropy H(E,X|X̂) in two ways:

H(E,X|X̂) = H(E|X, X̂) +H(X|X̂) = H(X|E, X̂) +H(E|X̂). (7)

Calculate each of these four expressions and complete the proof of the Fano inequality.

Hints: For H(E|X̂) use the fact that conditioning reduces entropy: H(E|X̂) ≤ H(E). For
H(X|E, X̂) consider the cases E = 0, 1 individually.
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