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Exercise 1. Trace distance and fidelity: Fuchs-van de Graaf inequalities

Trace distance δ(ρ, σ) and fidelity F (ρ, σ) of two quantum states ρ, σ ∈ S(H) are closely related.
In some sense they can be considered equivalent measures of distance, as we will explore in this
exercise. Before we start, let us repeat the quite different definitions of the two objects, δ and
F .

δ(ρ, σ) := tr |ρ− σ| ≡ tr

[√
(ρ− σ)†(ρ− σ)

]
= max

P proj.
tr [P (ρ− σ)] (alternative def.)

F (ρ, σ) := tr

[√√
ρσ
√
ρ

]
= max

|Ψ〉,|Φ〉 purif.
|〈Ψ|Φ〉| (Uhlmann)

(a) Show that in the case of pure states ρ = |ψ〉〈ψ|, σ = |φ〉〈φ| trace distance and fidelity
fulfil

δ(ρ, σ) =
√

1− F (ρ, σ)2 . (1)

(b) Use that trace distance can only decrease under quantum operations (see last sheet) to
show that for general ρ, σ ∈ S(H)

δ(ρ, σ) ≤
√

1− F (ρ, σ)2 . (2)

There is yet another very useful characterization of the fidelity as an optimization over all
possible POVM measurements. For two (classical) probability distributions {pm}m and {qm}m
define the classical fidelity to be

F ({pm}, {qm}) :=
∑
m

√
pmqm .

The quantum fidelity can then be written as

F (ρ, σ) = min
{Em} POVM

F ({pm}, {qm}), (3)

where pm := tr[ρEm] and qm := tr[σ Em]. Likewise, using the same notation, the quantum trace
distance can be written as

δ(ρ, σ) = max
{Em} POVM

δ({pm}, {qm}), (4)

where δ({pm}, {qm}) is the classical trace distance of the respective probability distributions.

(c) Use this way of writing F (ρ, σ) and δ(ρ, σ) to prove that for any two states ρ, σ ∈ S(H)

1− F (ρ, σ) ≤ δ(ρ, σ) . (5)

In total this shows ‘equivalence’ of δ and F in terms of the inequalities

1− F (ρ, σ) ≤ δ(ρ, σ) ≤
√

1− F (ρ, σ)2 .
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Exercise 2. Properties of von Neumann entropy

The von Neumann entropy of a density operator ρ ∈ S(HA) is defined as H(A)ρ := −tr
(
ρ log ρ

)
.

Given a composite system HA⊗HB⊗HC we write H(AB)ρ to denote the von Neumann entropy
of the reduced state of a subsystem, ρAB = trC(ρABC). When the state ρ is obvious from the
context we can drop the index.
The conditional von Neumann entropy may be defined as H(A|B)ρ := H(AB)ρ−H(B)ρ. In the
Alice-and-Bob picture this quantifies the uncertainty that Bob, who holds part of a quantum
state, ρB, still has about Alice’s state.
The strong sub-additivity property of the von Neumann entropy shows up a lot. It applies to a
tripartite composite system HA ⊗HB ⊗HC ,

H(A|BC)ρ ≤ H(A|B)ρ. (6)

(a) Prove the following general properties of the von Neumann entropy.

(i) If ρAB is pure, then H(A)ρ = H(B)ρ.

(ii) If ρABC is pure, then H(A|C)ρ = −H(A|B)ρ.

(iii) If two systems are independent, ρAB = ρA⊗ ρB, then H(AB)ρ = H(A)ρA +H(B)ρB .

(b) Consider a bipartite state that is classical on subsystem Z: ρZA =
∑

z pz|z〉〈z|Z ⊗ ρzA for
some orthogonal basis {|z〉Z}z of HZ and a set of states {ρzA}z ⊂ S(HA). Show that:

(i) The conditional entropy of the quantum part, A, given the classical information Z is

H(A|Z)ρ =
∑
z

pzH(A|Z = z), (7)

where H(A|Z = z) = H(A)ρzA .

(ii) The entropy of A is concave,

H(A)ρ ≥
∑
z

pzH(A|Z = z). (8)

(iii) The entropy of a classical probability distribution {pz}z cannot be negative, even if
one has access to extra quantum information, A,

H(Z|A)ρ ≥ 0. (9)

Remark: Eq (9) holds in general only for classical Z. Bell states are immediate
counterexamples in the fully quantum case.

Exercise 3. Upper bound on von Neumann entropy

(a) Given a state ρ ∈ S(HA), show that

H(A)ρ ≤ log |HA| . (10)

Hints: Consider the state ρ̄ =
∫
UρU †dU , where the integral is over all unitaries U ∈

U(HA) and dU is the Haar measure. Find ρ̄ and use concavity, (8), to show (10). The
Haar measure satisfies d(UV ) = d(V U) = dU , where V ∈ U(HA) is any fixed unitary.

(b) For ρAB ∈ S(HA ⊗HB), show that the conditional entropy satisfies

− log |HA| ≤ H(A|B)ρ ≤ log |HA| . (11)
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