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Exercise 1. Entropy as a measure of uncertainty

These two graphs represent the probability distributions of the weather conditions for a summer day in
Zurich and Porto Covo. We will try to quantify the uncertainty we have about the weather in both cases
using some entropy measures. Here log ≡ log2.
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(a) Suppose you want to make lists of all the weather possibilities in both places (for instance, to decide
how many different sets of clothes you need when visiting those places, to be on the safe side). How
long would the two lists be?

Realistically, you do not expect snow in Porto Covo or tornados in Zurich on a summer day—you
can safely leave those possibilities out of your lists if you allow for a very small error tolerance.
How long are the lists if you dismiss very unlikely events? Relate those results to the max-entropy,

Hmax(X)P = log |PX |, (1)

where |PX | is the size of the support of PX (i.e. the number of outcomes with non-zero probability),
and to its smooth version,

Hε
max(X)P = min

QX∈Bε(PX)
Hmax(X)Q, (2)

where the minimum goes over all probability distributions QX that are ε-close to PX according to
the trace distance.

(b) How likely are you to correctly guess the weather in each place? Relate that to the classical min-
entropy of a probability distribution PX over X is defined as

Hmin(X)P = − log max
x∈X

PX(x). (3)

Solution.

(a) There are 9 possibilities in each case, so the lists would have that size. The max-entropy
Hmax(X)P = log |PX | give us the logarithm of that value.

If we accept an error tolerance ε we can ignore all the events with probabilites that sum up
to ε (so that with probability ε something will happen that is not on our list). For instance,
if we choose ε = 2% we can dismiss the possibility of snow, freezing rain, tornados, raining
frogs and thundersnow in Zurich (and our list would have 4 entries) and further ignore
thunderstorms in Porto Covo, needing a list with only 3 items. This corresponds to take
ε = 0.02 and calculate the smooth max-entropy of the two probability distributions defined
by the weather possibilities. The size of the lists is 2H

ε
max .
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(b) Our best strategy is, as usual, to bet on the most likely outcome and your probability of
winning is precisely the probability that referred outcome occurs – 83.75% in the case of
Porto Covo and 38.70% in Zurich. In terms of entropies this is 2−Hmin . We have that
Hmin(Porto Covo) = 0.256 and Hmin(Zurich) = 1.37 : the lower the min-entropy, the more
likely we make a correct guess.

Exercise 2. Mutual Information

After losing a bet with your Scottish grandfather about whether listening to the radio forecast would help
you predict the weather, you have been studying information theory compulsively to try to come up with a
clever argument that would make him stop mocking you. You are convinced that even though you did not
guess correctly more often than he, you somehow have more information about the weather than he does.

(a) The mutual information between two random variables is given by

I(X : Y )P = H(X)P −H(X|Y )P , (4)

where H(X) is the Shannon entropy of X,

H(X)P = 〈− logPX(x)〉x = −
∑
x

PX(x) logPX(x) (5)

and H(X|Y ) is the conditional Shannon entropy of X given Y ,

H(X|Y )P =
〈
− logPX|Y=y(x)

〉
x,y

= −
∑
x,y

PXY (x, y) logPX|Y=y(x)

= H(XY )P −H(Y )P .

(6)

Compute the mutual information between your guess and the actual weather, and do the same for
your grandfather. Remember that your grandfather knows it rains on 80% of the days. You also
listen to the forecst, knowing it is right 80% of the time and always correct when it predicts rain.

(b) You devise the following betting game to prove that your extra information is useful. You and
your grandfather start with £1. Every night each of you can bet part of your money on the next
day’s weather. If your guess was right you double the amount you bet (e.g., in the first night your
grandfather bets £0.2 on rain; if it rains he ends up with £1.2, otherwise with £0.8). Any winnings
can be used in future rounds.

What is your optimal strategy for betting, after listening to the weather forecast? What is your
grandfather’s optimal strategy? After 30 days, what do you expect your total money will be? And
your grandfather’s?

Solution.

(a) The mutual information is given by I(X : Y ) = H(X) − H(X|Y ) . Let us call your
grandfather G, you Y and the actual weather W . We may also assume you followed the
radio forecast (which we saw was an optimal strategy) and we will hold on to the notation
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R̂, Ŝ for guesses (both yours and your grandfather’s). Then we have, for the grandfather

H(W ) = −P (R) logP (R)− P (S) logP (S)

= −0.8 log 0.8− 0.2 log 0.2

H(G) = −P (R̂) logP (R̂)− P (Ŝ) logP (Ŝ)

= −1. log 1.− 0. = 0

H(GW ) = −P (R̂R) logP (R̂R)− P (ŜR) logP (ŜR)− P (R̂S) logP (R̂S)− P (ŜS) logP (ŜS)

= −0.8 log 0.8− 0− 0− 0.2 log 0.2

H(W |G) = H(GW )−H(G)

= −0.8 log 0.8− 0.2 log 0.2

I(W : G) = H(W )−H(H|G)

= 0.

For your case we will calculate the conditional entropy directly,

H(W ) = −0.8 log 0.8− 0.2 log 0.2

H(W |Y ) = −P (R̂)
[
P (R|R̂) logP (R|R̂) + P (S|R̂) logP (S|R̂)

]
− P (Ŝ)

[
P (R|Ŝ) logP (R|Ŝ) + P (S|Ŝ) logP (S|Ŝ)

]
= −0.6[1 log 1 + 0]− 0.4[0.5 log 0.5 + 0.5 log 0.5]

= −0.4 log 0.5

I(W : Y ) = H(W )−H(H|Y )

= −0.8 log 0.8− 0.2 log 0.2 + 0.4 log 0.5

= 0.32.

(b) You are right—the exercise did not specify what we meant by “optimal strategy”. What are
we trying to optimise: the expectation value of our money after 30 days or the probability
of having more money than the other player?

Let us first compute your grandfather’s expected gain after n days, if he always bids a
fraction b of his money on rain. Let PR(k) be the probability that there are exactly k
rainy days. We have

〈£G〉 =
n∑

k=0

PR(k) (1 + b)k(1− b)n−k

=
n∑

k=0

(
n

k

)
0.8k 0.2n−k (1 + b)k(1− b)n−k

= (1 + 0.6 b)n,

(S.1)

which is maximised if b = 1, i.e., if your grandfather bids all his money on rain every
evening. In this case, his expected gain is 1.6n Of course, his probability of winning
anything at all is quite small for large n: only 0.8n, which is the likelihood of having n
rainy days in a row (in which case he winds up with £2n). With probability 1 − 0.8n he
will lose all his money on the first sunny day.

As for you, how much you bid when the radio predicts a sunny day has no impact in your
expected gain (because you will guess correctly 50% of the time: PR|Ŝ = PS|Ŝ = 50%). So
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if you choose to keep your money when the forecast is sun, and go all in if it is rain, your
expected gain is

〈£Y 〉 =
n∑

k=0

PR̂(k) 2k

=
n∑

k=0

(
n

k

)
0.6k 0.4n−k 2k

= 1.6n,

(S.2)

where PR̂(k) is the probability that the radio predicts rain on exactly k of the n days.

Conclusions: If the two of you follow these strategies (your grandfather always going all
in, you only when the forecast is rain, and bidding nothing if the radio says sunny), your
expected gain is the same. However, his likelihood of losing everything is huge (1− 0.8n),
while you will almost always make money (except with probability 0.4n, when all forecasts
are good and you never risk anything). Only in the unlikely event that it rains every day
(and there is at least one sunny forecast) will your grandfather finish with more more
money than you.

Exercise 3. Channel capacity
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(c) Yet Another Channel

(a) The asymptotic channel capacity is given by

C = max
PX

I(X : Y ).

Calculate the asymptotic capacities of the first two channels depicted above.

(b) We can exploit the symmetries of some channels to simplify the calculation of the capacity.

Consider N possible probability distributions as input to a general channel,
{
P iX
}
i
, with the property

that I(X : Y )P i = I(X : Y )P j ,∀i, j. Suppose you choose which distribution to use for the input
by checking a random variable, B, with possible values b = {1, . . . , N}. Show that in this case
I(X : Y |B) ≤ I(X : Y ). 1

1Notice that this inequality only holds for the specific case treated here. If X,Y and B are correlated in a
different way this inequality does not have to be true.
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(c) How can you use that to find the probability distribution PX that maximises the mutual information
for symmetric channels?
Hint: Consider

{
P iX
}
i

permutations of P 1
X .

(d) Using the result from (b), compute the capacity of the last channel. How would you proceed to
reliably transmit one bit of information?

Solution.

(a) The capacity of the binary symmetric channel evaluates to

C = max
PX

I(X : Y ) = max
PX

H(Y )−H(Y |X)

= max
PX

H(Y ) +
∑
x,y

PX(x)PY |X=x(y) logPY |X=x(y)

= max
PX

H(Y )−
∑
x

PX(x) Hbin(p)

= max
PX

H(Y )− Hbin(p)

= 1−Hbin(p),

(S.3)

where Hbin(p) is the binary entropy, i.e. the entropy of the probability distribution (p, 1−
p),

Hbin(p) = p log
1

p
+ (1− p) log

1

1− p
.

To maximise H(Y ) we chose the uniform distribution on the input, P u
X = (12 ,

1
2), see part

(b).

Similarly, for the symmetric erasure channel, we have

C = max
PX

H(Y )−H(Y |X)

= max
PX

H(Y )−Hbin(p)

= 2
1− p

2
log

2

1− p
+ p log

1

p
−Hbin(p)

= 1− p.

(S.4)

(b) We have

I(X : Y |B) = H(Y |B)−H(Y |XB)

= H(Y |B)−H(Y |X) (∗)

≤ H(Y )−H(Y |X) (∗∗)

= I(X : Y ),

(S.5)

where (∗) stands because B is just a label that tells us which probability distribution P i
X

we used, so knowing X is as good as knowing X and B, in the sense that H(Y |XB) =
H(Y |X), and (∗∗) comes from the data-processing inequality, H(Y |B) ≤ H(Y ) (which in
lay terms says that extra information cannot hurt).

(c) For symmetric channels, the mutual information between input and output is invariant
under permutation of the inputs (that’s how they are defined). Look for instance at the
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symmetric erasure channel. The input distribution P 1
X = (0.75, 0.25) yields the same

mutual information as P 2
X = (0.25, 0.75).

Not knowing which permutation of PX was used in the input is equivalent to take a
uniform mixture over all possible permutations of PX . Conveniently, such mixture gives
us the uniform distribution:

PX =


PX(x1)
PX(x2)
...
PX(xN )

 ,
{
P i
X

}
i=1,...,N !

permutations of PX , (S.6)

N !∑
i

1

N !
P i
X =

1

N !


(N − 1)! PX(x1) + (N − 1)! PX(x2) + · · ·+ (N − 1)! PX(xN )
(N − 1)! PX(x1) + (N − 1)! PX(x2) + · · ·+ (N − 1)! PX(xN )

...
(N − 1)! PX(x1) + (N − 1)! PX(x2) + · · ·+ (N − 1)! PX(xN )


(S.7)

=
1

N


∑

i PX(xi)∑
i PX(xi)

...∑
i PX(xi)

 =


1/N
1/N

...
1/N

 . (S.8)

This means that for any input distribution PX the mutual information always increases
if instead you use the uniform distribution. Here, I(X : Y |B) is the mutual information
knowing you used PX (take B = 1), and I(X : Y ) is the mutual information for the uniform
distribution. Conclusion: for symmetric channels the mutual information is maximised if
one takes the uniform distribution as input.

(d) Using part (b) and (c), we choose the uniform distribution on X and calculate the capacity:

C = max
PX

I(X : Y ) = I(X : Y )PuX = H(Y )−H(Y |X)

= −
∑
y

PY (y) logPY (y) +
∑
x,y

PXY (x, y) logPY |X(y)

= −
∑
y

(∑
x

PX(x)PY |X=x(y)

)
log

(∑
x

PX(x)PY |X=x(y)

)
+
∑
x,y

PX(x)PY |X=x(y) logPY |X=x(y)

= −4 · 1

4
log

(
1

4

)
+ 4 · 1

4
Hbin(p) = 2−Hbin(p).

(S.9)
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