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Exercise 1. BB84

The first QKD protocol was invented by Bennet and Brassard in 1984 (hence its name). In its entangle-
ment based version (called Ekert91), Eve, an adversary, prepares many copies of a two-qubit state ρAB

that she distributes to Alice and Bob (part A goes to Alice, part B goes to Bob). For each entangled
state Alice and Bob have, they each randomly choose one of two bases to measure their part of their state
in. These bases are: {|0〉, |1〉} and {|+〉, |−〉}. Whenever Alice measures 0 or + she writes down “0”,
and whenever she measures 1 or − she writes down “1”. Likewise, Bob assigns “0” to outcomes 0 or +
and “‘1” to outcomes 1 or −. After that, Alice and Bob carry out the following classical steps (usually
referred to as post-processing) involving authenticated classical communication.

1. Basis Sifting: Alice and Bob will sometimes measure in the same basis, in which case they will
keep their measurement outcomes. If they measure in different bases they will throw away their
measurement outcomes. To determine when they have measured in the same or different bases, Bob
communicates classically to Alice all the bases he measured in. Whenever Alice sees he measured
in a different basis, she tells Bob to discard that measurement result (and Alice discards hers as
well).

2. Parameter Estimation: Since Eve may give any state to Alice and Bob, Alice and Bob want to see
what percentage of their signals are errors, which will help them do the next two steps. One way
of doing this is te following: Bob can pick a random subset of his string and communicate it to
Alice. Alice can compare Bob’s results with hers, and tell Bob what percentage of those results were
errors. This will give them an estimate of the percentage of errors they have in the remainder of
their string. Bob discards all of the bits that he communicated to Alice to do this step, and Alice
removes the corresponding bits in her string.

Alice and Bob only continue to the next steps if the error rate is below some threshold. If the error
rate is too high, it means Eve has too much information about the states that were sent, and no
amount of privacy amplification (the last step) can create a secret key.

3. Error Correction: Now that we know how many errors we have, Alice and Bob would like to remove
them from their shared string. There exist ways for them to do this at the expense of reducing the
length of their shared string.

4. Privacy Amplification: Once the errors are removed, it is possible that Eve has some information
about what their shared string is. At the expense of reducing the length of their string, they can
reduce Eve’s knowledge about their string to a negligible amount (much less than one bit, for exam-
ple), with high probability. The amount they need to reduce their shared string can be quantified,
and it depends on the error probability that Alice and Bob estimated. At the end of this step, we
say that Alice and Bob share a secret string. By ‘secret’ we mean that Eve has at most a very small
amount of information about their string with high probability.

(a) Show that the optimal state ρAB for Alice and Bob to be sent by Eve is the maximally entangled
state: |φ+〉 = 1/

√
2(|00〉+ |11〉).

Hint: Show that with this state Alice and Bob always obtain the same outcomes and that Eve has
no information about the them.

(b) Show that the optimal strategy for Eve (given that she has to send i.i.d. states to Alice and Bob)
is to keep a purification of ρAB, namely |φ〉ABE.
Hint: One way of showing this is to argue that for pure states ρABE with fixed marginal ρAB,
H(A|E) is maximal. Why?

(c) Show that the entanglement based scheme is the same as a prepare and measure scheme outlined
in Figure 1. In a prepare and measure scheme, Alice randomly prepares one of the quantum
states {|0〉, |1〉, |+〉, |−〉} and then sends them through an insecure quantum channel, where Eve can
influence the quantum states as she wants, as long as she obeys quantum mechanics. Bob receives
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the states from Eve and performs the same measurement he did in the entanglement based version.
Hint: Directly reduce the prepare and measure scheme to the entanglement based version.

(d) Describe three problems that could arise when implementing a quantum key distribution scheme
experimentally.
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Figure 1: The BB84 prepare and measure protocol

Solution.

(a) To show that this state is optimal, we need to show that Alice and Bob always get the
same measurement outcome for both measurement bases, and that Eve has no information
about their outcomes.

If Alice and Bob both measure in the Z-basis, then the probability that they get the same
outcome is tr(P00 |φ+〉〈φ+|)+tr(P11 |φ+〉〈φ+|) = 1, where Pii is the projection onto |ii〉〈ii|.
Similarly, if they both measure in the X-basis, then tr(P++ |φ+〉〈φ+|)+tr(P−− |φ+〉〈φ+|) =
1.

Eve is interested in learning either Alice or Bob’s system, as this gives her access to both
of their measurement outcomes. We can purify the state shared between Alice and Bob
(which is already pure) and add Eve’s ancilla E: ρABE = |φ+〉〈φ+|AB ⊗ ρE . Now consider
H(A|E) = H(AE)−H(E), by definition. Using the fact that ρAE has product form, and
that ρA is a maximally mixed state, we get H(A|E) = H(A) + H(E) −H(E) = 1. This
implies that Eve has no information about Alice’s state (or her measurement outcomes,
due to the data processing inequality). Eve could equivalently try to find out about Bob’s
system. By symmetry we have H(B|E) = 1.
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Alternatively, one could consider the mutual information Eve has with Alice and Bob:
I(A : E) = H(A) + H(E) −H(AE) = H(A) + H(E) −H(A) −H(E) = 0, again due to
the form of ρABE . Similarly, I(B : E) = 0.

(b) The fact that we reduce Eve’s strategies to i.i.d. strategies means that in n rounds of the

protocol, the total state distributed by Eve must be of the form η
(n)
ABE = ρ⊗nABE . Hence,

instead of the total state η
(n)
ABE for n rounds it is enough to consider only the state of one

round, ρABE .

Let us now compare two cases, one in which ρABE = |ψ〉〈ψ|ABE is pure, and one where
ρABE = σABE is mixed. The mixed state can be purified to |ϕ〉〈ϕ|ABEE′ and due to the
data processing inequality (or, mainly, strong subadditivity) we have

H(A|E)σ ≥ H(A|EE′)|ϕ〉 . (S.1)

But now |ϕ〉 and |ψ〉 are two purifications of the same marginal ρAB, hence can be related
by a local isometry on the purifying system (which cannot change the eigenvalues of the
marginals). Thus: H(A|EE′)|ϕ〉 = H(A|E)|ψ〉. Altogether we find that purifications
always give more information to Eve than mixtures of them, H(A|E)σ ≥ H(A|E)|ψ〉. The
same can be shown for Eve’s knowledge about Bob’s state, H(B|E) using symmetry under
exchange of A and B.

(c) In the prepare and measure scheme, Alice chooses one of four states to send to Bob. She
could model this as preparing a bipartite state on C4 ⊗ C2, sending the two-dimensional
part to Bob and performing a measurement in her four-dimensional space (projecting onto
one of |0〉, |1〉, |2〉, |3〉). The state would then be

|Ψ〉 =
1

2
(|0〉|0〉+ |1〉|1〉+ |2〉|+〉+ |3〉|−〉)

=
1

2

(
|0〉|0〉+ |1〉|1〉+ |2〉

(
|0〉+ |1〉√

2

)
+ |3〉

(
|0〉 − |1〉√

2

))
=

1

2

((
|0〉+

|2〉+ |3〉√
2

)
|0〉+

(
|1〉+

|2〉 − |3〉√
2

)
|1〉

)
≡ 1√

2

(
|0̃〉|0〉+ |1̃〉|1〉

)
,

(S.2)

where |0̃〉 and |1̃〉 are orthonormal states that are linear combinations of the basis vectors
in Alice’s four-dimensional space. This way of seeing the prepare and measure scenario
makes it obvious that it just another way of distributing entangled states to Alice and
Bob. Now Alice and Bob could as well perform the same procedure as in the entanglement
based scheme.

(d) There are several practical problems with QKD, some examples are:

(i) The measurement devices to do not act exactly as described in the protocol, leaving
options to Eve to gain more information about the outcomes than otherwise possible.

(ii) The states that are required to be prepared, are not prepared exactly.

(iii) Eve can do an attack on the protocol by using other degrees of freedom, such as the
frequency of the light used to communicate, use multiple photons/qubits to send into
the measurements on Alice and/or Bob, monitoring the relative phases of the pulses
between Alice and Bob, etc. These are called side-channel attacks and have been
shown to be a major problem when implementing QKD protocols.
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(iv) The classical channel is not perfectly authenticated. However, an authenticated chan-
nel is necessary so Alice and Bob know who they are communicating with in the post
processing steps.

If you are interested in more detail how QKD can be hacked, see http://www.vad1.com/

lab/.
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