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Exercise 1. Dirac δ function reminder

Lernziel: The Dirac delta function appears frequently when performing Fourier trans-
forms. In quantum mechanics Fourier transforms allow us to switch basis from real
space to momentum space and vice versa. As we will often need to do this we will en-
counter delta functions on a regular basis and should familiarise ourselves with them.

The Dirac delta function may be defined by:

δ(x) = 0 if x 6= 0 and

∫ ∞
−∞

δ(x)dx = 1

1.1. Representations

Possibly the simplest way to picture this is the top hat function in the limit a→ 0:

f(x) =

{
0 if |x| > a
1
2a if |x| ≤ a

However there are many other representations. For each of the following functions:

(a) f(x) = αe−x
2/σ2

(b) g(x) = ασ
x2+σ2 (c) h(x) = ασ

(
sin (x/σ)

x

)2
show that in the limit σ → 0 they become delta functions and find the corresponding α to
normalise them properly.

1.2. Properties

The key property of the Dirac delta function is the following:

∫ ∞
−∞

δ(x− x0)f(x)dx = f(x0)

With this starting point in mind evaluate:

∫ ∞
−∞

δ(f(x))dx

Find explicit expressions for the following two cases:

(a) f(x) = ax (b) f(x) = x2 − x20
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Exercise 2. Fourier transforms reminder

Lernziel: Fourier transforms play a central role in quantum mechanics, allowing us to
switch between different basis. Depending on the size of the system being considered
and whether it is continuous or discrete in space we have to use different transforms.
Here we familiarise ourselves with this concept.

Consider a 1D system of length L with sites spaced by a, as in figure 1.

L

a

Figure 1: A lattice with lattice constant a involving N = L/a sites at locations xm = am.

Give an example of a physical system which may be well described by the four following limits
(ignore the fact we are in 1D):

(a) 0 < a < L <∞

(b) 0← a < L <∞

(c) 0 < a < L→∞

(d) 0← a < L→∞

2.1. More representations of δ functions and Kroenicker δs For case (a), evaluate
the sums

Xm =
1

N

N/2−1∑
n=−N/2

eiknxm and Kn =
1

N

N/2−1∑
m=−N/2

e−iknxm

with kn = 2πn/L. Extend the expressions Xm and Kn to the cases (b), (c) and (d) and evaluate
them. What prefactors must you use to have dimensionless and normalised results at the end?
Note the relation to Poisson’s formula.

Hint: Recall the formula for a geometric series and numbers on the unit circle in the complex
plane:

N−1∑
n=0

zn =
1− zN

1− z
and

N−1∑
n=0

e2πin/N = 0

You may use the following representation of a δ function:

lim
k→∞

sin(kx)

x
= πδ(x)
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2.2. Fourier transforms and their inverses

We now define the Fourier transforms and their inverses as follows for the four situations:

(a)

f̃(kn) = F [f(xm)] =

N/2−1∑
m=−N/2

f(xm)e−iknxm

f̂(xl) = F−1[f̃(kn)] =
1

N

N/2−1∑
n=−N/2

f̃(kn)eiknxl

(b)

f̃(kn) = F [f(x)] =
1

L

∫ L/2

−L/2
dxf(x)e−iknx

f̂(x) = F−1[f̃(kn)] =

∞∑
n=−∞

f̃(kn)eiknx

(c)

f̃(k) = F [f(xm)] =

∞∑
m=−∞

f(xm)e−ikxm

f̂(xl) = F−1[f̃(k)] =
a

2π

∫ π/a

−π/a
dkf̃(k)eikxl

(d)

f̃(k) = F [f(x)] =

∫ ∞
−∞

dxf(x)e−ikx

f̂(x) = F−1[f̃(k)] =
1

2π

∫ ∞
−∞

dkf̃(k)eikx

For each of these explicitly show F−1[F [f ]] = f . Use your results from exercise 2.1.

Exercise 3. Green’s function reminder

Lernziel: Green’s functions allow us to solve non-homogeneous boundary value prob-
lems, which are frequent in physics. Here we evaluate the Green’s function for a simple
linear operator to refresh our memories.

3.1. Evaluate the Green’s function for the linear operator Lx = ∂2x − k20.

3.2. Find the solution of the driven equation Lxf(x) = S(x) for a given source S(x).

3.3. * Analytically continue your result in 3.1 to the operator Lx = ∂2x + k20. What physics
does this represent?
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Exercise 4. Physics III reminder

Lernziel: Matter may exhibit wavelike behaviour, for example an electron beam may be
diffracted, just like a beam of light. If the wavelength is too small then the dynamics
will be well described by classical mechanics. Here we will calculate the wavelength of
various objects and consider their implications.

4.1. Starting from the de Broglie hypothesis p = h/λ calculate the wavelength of massless
and massive particles with kinetic energy Ekin.

4.2. Evaluate the wavelengths of the following objects with Ekin = 1eV:

(a) a photon

(b) an electron

(c) a water molecule

(d) a 1 kg football

Comment on the results.

Exercise 5. Physics III reminder

Lernziel: It is often possible to obtain the correct physical behaviour without performing
any detailed calculations. Here we will find a rough approximation for the ionisation
temperature of hydrogen without solving its Hamiltonian.

5.1. Write down the x, p uncertainty principle and the Hamiltonian for a hydrogen atom.
Using all the available parameters estimate the binding energy of hydrogen.

5.2. Use your result to estimate the ionising temperature of hydrogen. What is the state of
hydrogen in the sun?
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