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Exercise 1. Lagrange Multipliers and Generalised Forces

Last time, you have seen that when the system is described by n coordinates q1, ..., qn (e.g. n = 2
for the double pendulum), then we have to solve n Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, i = 1, 2, ..., n (1)

Suppose for simplicity that we describe position of a point mass by three Cartesian coordinates
(r1, r2, r3). Then (1) can be replaced simply by one vector equation

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
(2)

where ∂
∂r = ( ∂

∂r1
, ∂
∂r2
, ∂
∂r3

) is just a different notation for the gradient.

a) Show using this notation that for a Lagrangian L(r, ṙ) = 1
2mṙ2−V (r) the Euler-Lagrange

equations imply mr̈ = −∂V
∂r . Does this result look familiar?

Let’s now add the constraint f(r) = 0 to our system. Mathematics than tells us that all we have
to do is to solve Euler-Lagrange equations for the modified Lagrangian

L′(r, ṙ, λ) =
1

2
mṙ2 − V (r) − λf(r) (3)

Note that from now on the scalar λ must be treated as any other coordinate and in general, it
is time-dependent! But does the new term in our Lagrangian have any physical meaning?

The Euler-Lagrange equations now become

mr̈ = −∂V
∂r

− λ
∂f

∂r
(4)

The terms on the right side can be then interpreted as force due to the potential V and some
additional force that arises due to the constraints. The simple calculation above can be gener-
alised for case with N masses with positions r1, r2, ..., rN . Note that i = 1, 2, ..., N here indexes
the masses, not the vector components!

b) We will explore the case N = 2 in more details. Consider two point masses m, M joined
by a light rod of length `. It is convenient to write the constraint in the form f(r1, r2) =
`2 − (r1 − r2)

2 = 0. Explain carefully using the observations above that the magnitude
of force due to the constraint on each mass is related to the Lagrange multiplier λ by
F = 2λ`. What is the direction of the force?

c) We now throw the system of masses to the free space where V = 0. Write down the
Lagrangian and derive the equations of motion for each mass. Show that they imply that
total momentum of the system is conserved.

d) Introduce the vector R = r1 − r2 and show that the equations from c) imply

µR̈ = 2λR where µ =
mM

M +m
(5)

1



e) Explain why the constraint implies R · Ṙ = 0. By differentiating this further show that
(5) can be rewritten as −µṘ2 = 2λ`2. Deduce that λ̇ = 0.

f) Discobolus rotates with angular velocity ω while holding the mass M in his right arm. He
releases the system of masses at time t = 0 when R(0) = R0. Show that Ṙ(0) = ω ×R0

and use this to find λ and hence the force that each mass experiences in the subsequent
motion. Can you show using simple Newtonian mechanics that your result is correct?

M
m

` ω

Exercise 2. The Cycloidal slope

Consider a slope with steepness described by the curve (cycloid){
x = R (θ − sin θ)

y = R (1 + cos θ)
with 0 ≤ θ ≤ π . (6)

A ball is put on this slope at the point (x0, y0) identified by θ = θ0 and starts rolling down (the
ball can be approximated as point-like)

Figure 1: A ball rolling down the cycloidal slope described by Eq. (6).

a) Write the expression of the velocity of the ball depending on the position using the con-
servation of energy and use it to show that the time the ball takes to arrive at the lowest
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point is given by

T =

√
R

g

∫ π

θ0

√
1 − cos θ

cos θ0 − cos θ
dθ . (7)

b) How does the time T vary by changing the position of the point (x0 , y0) where the ball
starts rolling?
Hint: Show that, for any t1 > 0, ∫ t1

0

dt√
t (t1 − t)

= π . (8)

Exercise 3. The Suspension Bridge

Given an inextensible bridge of length l and mass m suspended freely under gravity between the
points A = (−D/2, 0) and B = (D/2, 0) (Fig. 2). The goal of this exercise is to find the shape
y(x) of the bridge. Assume that the linear mass density µ = m/l of the bridge is constant and
that D < l.

Figure 2: A bridge suspended freely between points A and B.

a) The bridge will take the shape that minimizes its potential energy. Find a contribution of
the infinitesimal segment dl of the bridge to the overall potential energy V and show that
the total potential energy is µgV [y], where g is the gravitational acceleration and

V [y] =

∫ D/2

−D/2
v(y, y′)dx =

∫ D/2

−D/2
y
√

1 + y′2 dx. (9)

Fixed length l of the bridge imposes an integral constraint. Show that this constraint has
the following form:

G[y] =

∫ D/2

−D/2
g(y, y′)dx =

∫ D/2

−D/2

√
1 + y′2dx = l. (10)

Note that this is an example of a non-holonomic constraint.

Bellow we want to cast the variational problem (9)-(10) with an integral constraint into an
unconstrained variational problem.
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b)∗∗ Define:

V λ[y] = V [y] − λG[y] =

∫ D/2

−D/2
F λ(y, y′) dx (11)

where λ is some constant.

Show that finding the extrema of the functional V λ[y] is equivalent to extremising the
original functional V [y] and satisfying the constraint G[y] = l at the same time. Even if
you don’t manage to prove this statement, use it and try to solve the rest of the problem.

Hint. Assume that y = y(x) is a solution for the original variational problem (9)-(10) and embed

it in a 2-parameter family y = y(x; s, t), such that y = y(x) correspondes to (s, t) = (0, 0). Now

you can treat V [y] and G[y] as functions of (s, t) and use the method of Lagrange multipliers.

c) It has been shown previously that for systems with the integrand independent of the
integration variable, E-L equations are equivalent to the Beltrami identity:

F λ(y, y′) − y′
∂F λ(y, y′)

∂y′
= C.

Show that for our case, this can be massaged to the following form:

y − λ√
1 + y′2

= C, (12)

where C is a constant.

d) Solve the diff. equation (12) to find y(x). Adjust two integration constants and λ such
that your solution fulfills the boundary conditions and the constraint.

The shape you just (hopefully) found is called the catenary. You can now impress your
peers by quoting that this is the shape of the suspension wires of the Golden Gate bridge
of San Francisco and if turned upside down, the shape of the Gateway Arch in St. Louis.
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